Cho tam giác ABC cân tại A , đường cao AH . Gọi E,F lần lượt là hình chiếu của H trên AC và AB . Gọi M là trung điểm của CB
a) Chứng minh : AM vuông góc với EF
b) Gọi N là trung điểm của AB và AH cắt NM tại D . Chứng minh : EF //DB
Cho tam giác abc cân tại a , kẻ đường cao bh vuông góc với ac tại h, ck vuông góc với ab tại k, ab bằng 10cm , ah bằng 6cm ,lấy điểm d bất kì giữa b và c , gọi e,f theo thứ tự là hình chiếu của điểm d trên ac và ab. Tính de+df
Cho tam giác ABC vuông tại A, kẻ đường phân giác của góc B và góc C cắt nhau tại I. Gọi D, E lần lượt là hình chiếu vuông góc của I trên AB, AC.
a) CM: AD=AE
b)CM: BD+CE=BC
C) Cho AB=6cm, AC=8cm. Tính AD, AE
(Vẽ hình giùm e lun )
Bài 4. (3,5 điểm) Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H lên các cạnh AB và AC
a) Chứng minh AE = DH; EH = AD;
b) Trên tia đối của các tia DH và EH lần lượt lấy các điểm M và N sao cho DH = MD và EH = ME. Chứng minh HA là đường trung tuyến của tam giác HMN ;
c) Chứng minh MB // CN;
d) Chứng minh rằng: BC+ AH >AB + AC
Cho ΔABC vuông tại A, đường cao AH. Gọi D,E,F lần lượt là trung điểm của HB, HC và AH. Chứng minh:
a, DF⊥AC
b,CF⊥AD
c,BF⊥AE
1) Cho tam giác cân ABC (AB=AC). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M,N. DM=EN, đường thẳng BC cắt MN tại trung điểm I của MN. Chứng minh rằng: đường thẳng vuông góc vs MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.
2)Cho tam giác ABC vuông tại A, K là trung điểm của cạnh BC. Qua K kẻ đường thẳng vuông góc vs AK, đường này cắt các đường thẳng AB và AC lần lượt ở D và E. Gọi I là trung điểm của DE.
a)Chứng minh rằng: AI vuông góc vs BC
b) Có thể nói DE nhỏ hơn BC được không? Vì sao?
3) Cho tam giác ABC (AB>AC), M là trung điểm của BC. Đường thẳng đi qua M và vuông góc vs tia phân giác của góc A tại H cắt hai tia AB, AC lần lượt tại E và F. CMR:
a) EF^2/4 +AH^2=AE^2
b) 2BME=ACB-B
c) BE=CF
4)Cho tam giác ABC có góc B và C là 2 góc nhọn. Trên tia đối của tia AB lấy điểm D sao cho AD=AB, trên tia đối của tia AC lấy điểm E sao cho AE=AC. M là trung điểm của BE, N là trung điểm CB. Ax là tia bất kỳ nằm gưac 2 tia AB và AC. Gọi H, K lần lượt là hình chiếu của B và C trên tia Ax. Xác định vị trí của tia Ax để tổng BH+CK có giá trị lớn nhất.
5)Cho tam giác ABC có 3 góc nhọn, đường cao AH, ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông
góc vs AH (M,N thuộc AH)
a) CM: EM+HC=NH
b) CM: EN // FM
Bài 1: Cho ΔABC, M là điểm nằm giữa 2 điểm B và C. Gọi E và F lần lượt là hình chiếu vuông góc của B và C xuống đường thẳng AM. So sánh BE, CF và BC
Bài 2: Cho ΔABC vuông tại A, M là trung điểm của AC. Gọi E và F là chân các đường vuông góc kẻ từ A và C đến đường thẳng BM. Chứng minh: AB <\(\frac{BE+BF}{2}\)
Ai giúp mik hai bài này vs !!
Bài 1;cho tam giác ABC vuông tại A( AB>AC), kẻ phân giác BF. Gọi H là hình chiếu của điểm C trên BF, trên tia đối tia HB lấy điểm E sao cho HE=HF. gọi K là hình chiếu của F trên BC. CMR
a, so sánh FA và FC
b,chứng minh tam giác EBC vuông
c, cmr: CH,FK,AB đồng quy tại 1 điểm
Bài 2:
cho tam giác ABC vuông tại A, đường cao AH. Trên cạnh BC lấy điểm D sao cho BD=AB, đuơng vuông góc với BC tại D cắt AC tại E
a, so sánh AE và DE
b,chưng minh AD la phân giác góc HAC
c,đường phân giác góc ngoài tại đỉnh C cắt đường thẳng BE tại K. Tính BKA và BKC
d, So sánh HD và DC
e,chứng minh AB+AC<BC+AH
Cho tam giác ABC có AB<AC. Gọi M là trung điểm BC, từ M kẻ đường thẳng vuông góc với tia phân giác của góc A cắt đường thẳng AB, AC lần lượt tại E và F. C/m : AE=AB+AC/2
Cho ABC vuông tại A đường cao AH . Trên cạnh AClấy điểm E sao cho AH=AE. Qua E kẻ đường vuông góc với AC, cắt cạnh BC tại D. ai vẽ hình giúp mình với ạ