a) Xét \(\Delta IMH\) và \(\Delta IMC\) có:
IM là cạnh chung
HM = MC (M là trung điểm HC)
\(\widehat{IMH}=\widehat{IMC}\) = 900
\(\Rightarrow\) \(\Delta\)IMH = \(\Delta\)IMC (c-g-c)
b) Do \(\Delta\)IMH = \(\Delta\)IMC (cmt)
\(\Rightarrow\) \(\widehat{IHM}=\widehat{ICM}\) (hai góc tương ứng)
Mà \(\widehat{AHI}+\widehat{IHM}=90^0\)
\(\Rightarrow\widehat{AHI}+\widehat{ICM}=90^0\)
Mà \(\widehat{A_1}+\widehat{ICM}=90^0\)
\(\Rightarrow\widehat{AHI}=\widehat{A_1}\)
Do AH \(\perp\) BC (gt)
IM \(\perp\) BC (gt)
\(\Rightarrow\) AH // IM
\(\Rightarrow\) \(\widehat{A_1}\) = \(\widehat{I_1}\)
Mà \(\widehat{AHI}=\widehat{A_1}\) (cmt)
\(\Rightarrow\) \(\widehat{AHI}=\widehat{I_1}\)
Hay \(\widehat{AHI}=\widehat{AIN}\)
c)
\(\Delta\)IMH = \(\Delta\)IMC (cmt)
\(\Rightarrow\) IH = IC (hai cạnh tương ứng)
Xét \(\Delta\)AIN và \(\Delta\)IAH có:
AI chung
\(\widehat{A_2}=\widehat{I_2}\) (so le trong)
\(\widehat{I_1}=\widehat{A_1}\) (so le trong)
\(\Rightarrow\) \(\Delta\)AIN = \(\Delta\)IAH (c-g-c)
\(\Rightarrow\) AN = IH (hai cạnh tương ứng)
Mà IH = IC (cmt)
\(\Rightarrow\) AN = IC