Cho Δ ABC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm E sao cho MA = ME.
a) Chứng minh: ΔAMB= ΔEMC
b) Chứng minh: AB // EC
c) Chứng minh: AC = BE
Cho Δ ABC, gọi M là trung điểm của BC, trên tia đối của tia MA lấy điểm E sao cho MA = ME.
a) Chứng minh: ΔAMB= ΔEMC
b) Chứng minh: AB // EC
c) Chứng minh: AC = BE
cho ΔABC vuông tại A . Gọi M là chung điểm của cạnh BC . Trên tia đối của tia MA lấy điểm E sao cho ME = MA . Chứng minh rằng :
a) ΔAMB= ΔEMC
b)AC vuông góc CE
c) BC = 2AM
Cho ΔABC vuông tại A.Gọi M là trung điểm của BC. Trên tia đối của tia MA, lấy điểm E sao cho ME=MA a, Tính số đo ^ABC khi ^ACB=40o
b, Chứng minh: ΔAMB = ΔEMC và AB//EC
c, Từ C kẻ đường thẳng d //AE. Kẻ EK ⊥ d tại K. Chứng minh: ^KEC=^BCA
Cho tam giác ABC có M là trung điểm của cạnh BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh ΔAMB = ΔCMD
b) Chứng minh AB // CD.
c) Chứng minh AC = BD và AC // BD.
Cho tam giác ABC vuông tại A( AB> AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD= MA
a. Cho AB= 8cm, BC= 10cm. Tính AC?
b. Chứng minh ΔAMB = Δ DMC, từ đó suy ra CD ⊥ AC
c.Vẽ AH vuông góc với BC tại H, trên tia đối của HA lấy E sao cho HE = HA. Chứng minh: ΔACE cân.
d. Chứng minh BD = CE.
Cho ΔABC vuông tại A có AB = 6cm ; AC = 8cm ; BC = 10cm. Vẽ trung tuyến AM.
a) Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh ΔAMB = ΔDMC
b) Chứng minh AC ┴ DC
c) Chứng minh AM < (AB+AC):2
Cho tam giác ABC vuông tại A AB lớn hơn AC M là trung điểm của BC trên tia đối của ma lấy điểm D sao cho MD = ma a Chứng minh AB = BC và AB song song bc B Chứng minh tam giác ABC bằng tam giác bda Từ đó suy ra AM = BC chia 2 trên tia đối của AC lấy điểm E sao cho ae = AC Chứng minh Be song song AM đề tìm điều kiện của tam giác ABC để AC = BC chia 2
Cho ΔABC có ba góc nhọn (AB < AC). Gọi M là trung điểm của BC. Vẽ tia AM, trên tia AM lấy điểm D sao cho MA = MD.
a) Chứng minh ΔAMB = ΔDMC