Ta có: ΔBDM ~ ΔCME (cmt)
=> D M M E = B D C M = B D B M (do CM = BM (gt))
⇒ B D D M = B M M E
Xét ΔBDM và ΔMDE ta có:
D M E ^ = A B C ^ (gt)
=> ΔBDM ~ ΔMDE (c - g - c)
B D M ^ = M D E ^ (hai góc tương ứng)
Đáp án: B
Ta có: ΔBDM ~ ΔCME (cmt)
=> D M M E = B D C M = B D B M (do CM = BM (gt))
⇒ B D D M = B M M E
Xét ΔBDM và ΔMDE ta có:
D M E ^ = A B C ^ (gt)
=> ΔBDM ~ ΔMDE (c - g - c)
B D M ^ = M D E ^ (hai góc tương ứng)
Đáp án: B
cho tam giác ABC cân tại A có BC = 2a . M là trung điểm của BC lấy D,E heo thứ tự thuộc các cạnh AB,AC sao cho góc DME = góc B
a)Cm : tam giác BDM và tam giác CME đồng dạng
b) Cm: DM là tia phan giác góc BDE
c) tình chu vi tam giác ADE nếu tam giác ABC là tam giác đều
Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho D M E ^ = A B C ^ . Tính BD.CE bằng
A. 2 a 2
B. 3a
C. a 2
D. 4 a 2
cho tg ABC cân tại A. M là tđ BC. Trên AB,AC lần lượt lấy các điểm D,E sao cho góc CME= góc BDE
a, cm tg BDM đồng dạng tg CME
b, CM BD.CE= BM^2
c, Cm tg BDM đồng dạng tg MDE
Cho tam giác ABC cân tại A có BC = 2a, M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho góc DME = góc B .
a) Chứng minh BC, CE không đổi.
b) Chứng minh DM là tia phân giác của góc BDE.
c) Tính chu vi tam giác AED nếu tam giác ABC đều.
Giải chi tiết
cho tam giác ABC cân tại A có BC=2a, M là trung điểm của BC. lấy D,E thuộc AB,AC sao cho cho góc DME= góc B
a)CMR DB*CE không đổi
b)CMR DM là tia phân giác của góc BDC
c)tính chu vi của tam giac AED nếu tam giác ABC đều
Cho tam giác ABC cân tại A , BC=2a , M là trúng điểm của BC . Lấy D thuộc AB, E thuộc AC sao cho DM là phân giác góc BDE
C/M
a ) EM là phân giác của góc CED
b ) tam giác BDM ~ tam giác CME
c ) BD . CE = a^2
Giúp với mọi người ơi
Cho tam giác ABC cân tại A và M là trung điểm của BC. Lấy các điểm D,E theo thứ tự thuộc các cạnh AB,AC sao cho góc DME bằng góc B.
a) Chứng minh tam giác BDM đồng dạng với tam giác CME
b) Chứng minh BD.CE không đổi
c) Chứng minh DM là phân giác của góc BDE
Cho tâm giác ABC cân tại A và M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho góc DME bằng góc B.
a) Chứng minh : tâm giác BDM đồng dạng với tam giác CME
b) Chứng minh : BD.CE không đổi
c) Chứng minh DM là phân giác của góc BDE
cho tam giác ABC cân tại A ,M là trung điểm của BC ,lấy D và E lần lượt thuộc cạnh AB và AC sao cho góc MDB =góc CME
a.cm BM2=BD.CE
b. cm \(\Delta\)MDE đồng dạng \(\Delta\)BDM