bạn sửa 2 nghiệm phân biệt thành 1 nghiệm nhá
bạn sửa 2 nghiệm phân biệt thành 1 nghiệm nhá
6. Biết rằng phương trình x 3 −3x 2 +3 = 0 có ba nghiệm phân biệt. Chứng minh rằng trong ba nghiệm này có hai nghiệm a,b thoả mãn ab+3 = a+2b.
7. Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
8. Biết rằng phương trình P(x) = x 3 +3x 2 −1 có ba nghiệm phân biệt a < b < c. Chứng minh rằng c = a 2 +2a− 2,b = c 2 +2c−2,a = b 2 +2b−2.
1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))
b. chứng minh rằng đa thức
(x^2 - 4) * f(x) = (x-1) * f(x+1) có ít nhất ba nghiệm
c. cho đa thức f(x) thoả mãn
x * f(x+2) = (x^2 - 9) * f(x)
cmnr: Đa thức f(x) = 0 có ít nhất 3 nghiệm
10. Cho đa thức P(x) = 2x4 −x3 −5x2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x3 −3x+1. Tính P(a).P(b).P(c).
Cho đa thức P(x) = x^3 − 3x + 1 có ba nghiệm phân biệt x1, x2, x3. Đặt Q(x) = x^2 − 1. Tính giá trị của biểu thức E = Q(x1).Q(x2).Q(x3).
cho P(x)=x^3+ax^2+bx+c; Q(x)=x^2+x+2015, biết đa thức P(x) có 3 nghiệm phân biệt, còn đa thức P(Q(x))=0 vô nghiệm. CMR P(2015)>1/64
Cho đa thức P(x) = 2x 4 −x 3 −5x 2 +5x−5. Gọi a,b, c là ba nghiệm phân biệt của đa thức Q(x) = x 3 −3x+1. Tính P(a).P(b).P(c).
Biết rằng đa thức P(x)=x3+3x2-1 có 3 nghiệm phân biệt. Chứng minh rằng trong 3 nghiệm đó tồn tại hai nghiệm a,b mà ab+a+1=0.
Chứng minh Đa thức (x^2-4)*f(x)=(x-1)*f(x+1) có ít nhất 3 nghiệm