\(g\left(1\right)=1+1+1^2+...+1^{2011}+1^{2012}\)
\(=1+1+1+...+1\) (2013 số 1)
\(=2013.1=2013\)
\(g\left(-1\right)=1+\left(-1\right)+\left(-1\right)^2+\left(-1\right)^3+...+\left(-1\right)^{2012}+1\)
\(=\left[1+\left(-1\right)\right]+\left[1+\left(-1\right)\right]+..+\left[1+\left(-1\right)\right]+1\)
\(=0+0+...+0+1=1\)