Vì D(a) = 6 ⇒ 4a + 4 - 2 = 6 ⇒ 4a + 2 = 6 ⇒ 4a = 4
⇒ a = 1.
Chọn A
Vì D(a) = 6 ⇒ 4a + 4 - 2 = 6 ⇒ 4a + 2 = 6 ⇒ 4a = 4
⇒ a = 1.
Chọn A
Tìm a để P(x) - Q(x) là một đa thức bậc 2, trong đó P(x)= x^3+x-5, Q(x)= ax^3-x^2+1 (với a là hằng số).
A. a=1 B. a≠1 C. a=0 D. a≠0
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
P(x)=ax^3+bx^2+cx+d biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức P(x)
cho đa thức A(x)=ax^2+bx+6 có bậc 1 và A(1)=3 tìm a và b biết a b là hằng số
\(P(x)=ax^3+bx^2+cx+d\) biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức P(x)
\(F(x)=ax^3+bx^2+cx+d\) biết a,b,c,d là các hằng số thỏa mãn a+b+c+d=0 chứng minh 1 là nghiệm của đa thức F(x)
cho f(x) = 2(x^2-3) - ( x^2 - 3 ) - ( x^2 + 5x ) a, thu gọn f(x) . b , chứng tỏ -1 và 6 là nghiệm của f(x) . bài 2 : Tìm nghiệm của các đa thức . a, A(x) = -4x + 7 . b, B(x) = x^2 + 2x . c, C(x) = 1/2 - căn bậc hai x . d, D(x) = 2x^2 - 5
Tìm nghiệm của các đa thức a) f(x)=2x+5 b)-5x-1/2 c) h(x)=6x-12 d) h(x)=ax+b (với a,b là các hằng số)
a) Xác định a để nghiệm của đa thức f(x) = 2x - 4 cũng là nghiệm của đa thức g(x) = x2 - ax + 2
b) Cho f(x) = ax3 + bx3 + cx + d trong đó a,b,c,d là hằng số và thỏa mãn b = 3a + c. Chứng tỏ rằng f(1) = f(-2)