Ta có:
\(x^2+x+1\\ =\left(x^2+2.x.\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}\\ =\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\)
=> ĐPCM
Đặt : \(A=x^2+x+1\)
=> \(A=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0,\forall x\)
=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
=> \(A\ge\frac{3}{4},\forall x\)
=> A > 0, \(\forall x\)
Vậy : A > 0