Chứng tỏ rằng nếu phương trình a x 2 + b x + c = 0 có nghiệm là x 1 v à x 2 thì tam thức a x 2 + b x + c phân tích được thành nhân tử như sau:
a x 2 + b x + c = a ( x - x 1 ) ( x - x 2 )
Áp dụng : phân tích đa thức thành nhân tử.
a ) 2 x 2 - 5 x + 3 ; b ) 3 x 2 + 8 x + 2
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
3x2 + 8x + 2
Chứng tỏ rằng nếu phương trình ax2 + bx + c = 0 có nghiệm là x1 và x2 thì tam thức ax2 + bx + c phân tích được thành nhân tử như sau:
ax2 + bx + c = a( x - x1)(x - x2)
Áp dụng : phân tích đa thức thành nhân tử.
2x2 - 5x + 3
Cho phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có biệt thức ∆ = b 2 – 4 a c > 0 , khi đó, phương trình đã cho:
A. Vô nghiệm
B. Có nghiệm kép
C. Có hai nghiệm phân biệt
D. Có 1 nghiệm
cách phân tích đa thức có dạng ax + b\(\sqrt{x}\) + c thành nhân tử với x > 0
từ đó phân tích đa thức x +8 \(\sqrt{x}\) + 7 thành nhân tử với x > 0
Cho phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có biệt thức ∆ = b 2 – 4 a c = 0 . Khi đó, phương trình có hai nghiệm là:
A. x 1 = x 2 = b 2 a
B. x 1 = − b 2 a ; x 2 = b 2 a
C. x 1 = − b + Δ 2 a ; x 2 = − b − Δ 2 a
D. x 1 = x 2 = - b 2 a
Cho phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có biệt thức ∆ = b 2 – 4 a c > 0 , khi đó, phương trình có hai nghiệm là:
A. x 1 = x 2 = − b 2 a
B. x 1 = b + Δ 2 a ; x 2 = b − Δ 2 a
C. x 1 = − b + Δ 2 a ; x 2 = − b − Δ 2 a
D. x 1 = − b + Δ a ; x 2 = − b − Δ a
Cho phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có biệt thức Δ = b 2 - 4 a c . Khi đó phương trình có hai nghiệm là:
A. x 1 = x 2 = - b 2 a
B. x 1 = b + △ 2 a ; x 2 = b - △ 2 a
C. x 1 = - b + △ 2 a ; x 2 = - b - △ 2 a
D. x 1 = - b + △ a ; x 2 = - b - △ a
Cho phương trình a x 2 + b x + c = 0 ( a ≠ 0 ) có biệt thức ∆ = b 2 – 4 a c . Phương trình đã cho vô nghiệm khi:
A. ∆ < 0
B. ∆ = 0
C. ∆ ≥ 0
D. ∆ ≤ 0