Đáp án A
Tập hợp các tứ giác được lập từ bốn đỉnh của đa giác là:
Ta có: số đường chéo đi qua tâm của đa giác đều là 15
Để tứ giác thu được là hình chữ nhật. Chọn 2 đường chéo từ 15 đường chéo đi qua tâm:
Xác suất tìm được là
Đáp án A
Tập hợp các tứ giác được lập từ bốn đỉnh của đa giác là:
Ta có: số đường chéo đi qua tâm của đa giác đều là 15
Để tứ giác thu được là hình chữ nhật. Chọn 2 đường chéo từ 15 đường chéo đi qua tâm:
Xác suất tìm được là
Cho đa giác đều 20 đỉnh. Lấy ngẫu nhiên 4 đỉnh trong các đỉnh của đa giác. Tính xác suất để 4 đỉnh lấy được tạo thành tứ giác có 2 góc ở 2 đỉnh kề chung một cạnh của tứ giác là 2 góc tù.
A . 112 323
B . 14 323
C . 14 19
D . 16 19
Cho một đa giác đều (H) có 15 đỉnh. Người ta lập một tứ giác có 4 đỉnh là 4 đỉnh của (H). Tính số tứ giác được lập thành mà không có cạnh nào là cạnh của (H).
A. 4950.
B. 1800.
C. 30.
D. 450.
Cho đa giác đều có 15 đỉnh. Gọi M là tập tất cả các tam giác có ba đỉnh là ba đỉnh của đa giác đã cho. Chọn ngẫu nhiên một tam giác thuộc tập M, tính xác suất để tam giác được chọn là một tam giác cân nhưng không phải là tam giác đều.
A. 73 91
B. 18 91
C. 8 91
D. 18 19
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập các tam giáccó các đỉnh là các đỉnh của đa giá trên. Tính xác suất để chọn được một tam giác từ tập X là tam giác cânnhưng không phải là tam giác đều.
A. 23 136
B. 144 136
C. 3 17
D. 7 816
Cho hình tứ diện đều ABCD. Trên mỗi cạnh của tứ diện, ta đánh dấu 3 điểm chia đều cạnh tương ứng thành các phần bằng nhau. Gọi S là tập hợp các tam giác có ba đỉnh lấy từ 18 điểm đã đánh dấu. Lấy ra từ S một tam giác, xác suất để mặt phẳng chứa tam giác đó song song với đúng một cạnh của tứ diện đã cho bằng
A . 2 45
B . 9 34
C . 2 5
D . 4 15
Cho đa giác đều 20 cạnh. Chọn ngẫu nhiên 4 đỉnh của đa giác. Tính xác suất để 4 đỉnh được chọn tạo thành một hình chữ nhật nhưng không phải hình vuông.
A. 8 969
B. 12 1615
C. 1 57
D. 3 323
Một hình đa giác đều gồm 20 cạnh. Hỏi có thể lập được a. Bao nhiêu hình chữ nhật từ các định của đa giác trên? b. Bao nhiều hình tam giác từ các đỉnh của tam giác trên? c. Bao nhiêu đường chéo?
Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn tam giác trong tập hợp X. Xác suất để tam giác được chọn là tam giác cân bằng
A . 23 136
B . 144 136
C . 3 17
D . 11 68
Gọi là đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O n ∈ ℕ * và X là tập hợp các tam giác có ba đỉnh là các đỉnh của đa giác. Chọn ngẫu nhiên một tam giác thuộc tập X. Biết rằng xác suất chọn được một tam giác vuông thuộc tập X là 1 13 . Giá trị của n là
A. 9.
B. 14.
C. 10.
D. 12.