Tìm tọa độ giao điểm M của đường thẳng d:\(\left\{{}\begin{matrix}x=1+2t\\y=-2-t\\z=1-t\end{matrix}\right.\)và (P) :4x-y-z+5=0
A. M(1;1;2)
B. M(1;-1;2)
C. M(1;1;-2)
D. M(-1;-1;2)
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S): (x-1)²+y²+ (z+2)²=4 và đường thẳng d : x = 2 - y y = t z = m - 1 + t . Gọi T là tập tất cả các giá trị của m để d cắt (S) tại hai điểm phân biệt A, B sao cho các tiếp diện của (S) tại A và B tạo với nhau góc lớn nhất có thể. Tính tổng các phần tử của tập hợp T.
A. 3
B. -3
C. -5.
D. -4.
Trong không gian Oxyz, cho hai đường thẳng cắt nhau: d 1 : x = 1 + t, y = 1, z = 1 - t, d 2 : x = -t, y = 2 + t, z = 1. Viết phương trình của mặt phẳng (P) chứa hai đường thẳng d 1 , d 2
A. x + y + z - 3 = 0
B. x + y + z + 3 = 0
C. x - y + z - 1 = 0
D. x - y + z + 1 = 0
Trong không gian Oxyz, cho mặt cầu (S): ( x - 1 ) 2 + y 2 + ( z + 2 ) 2 = 4 và đường thẳng d : x = 2 - t y = t z = m - 1 + t Tổng các giá trị thực của m để d cắt (S) tại hai điểm phân biệt A, B và A B = 2 2 bằng
A. -5
B. 3
C. -3
D. -4
Cho d : x + 1 3 = y - 1 2 = z - 3 - 2 và ∆ : x 1 = y - 1 1 = z + 3 2 . Biết (d), ∆ cắt nhau tại M. Tìm tọa độ M
Trong không gian oxyz phương trình đường thẳng d đi qua điểm M(3;0;-1) và có vecto chỉ phương a=(-1;2;3) là
A. \(\left\{{}\begin{matrix}x=3-t\\y=2t\\z=-1+3t\end{matrix}\right.\)
B. \(\left\{{}\begin{matrix}x=-1+3t\\y=2\\z=3-t\end{matrix}\right.\)
C. \(\left\{{}\begin{matrix}x=3+t\\y=2t\\z=-1-3t\end{matrix}\right.\)
D. \(\left\{{}\begin{matrix}x=-1-3t\\y=2\\z=3+t\end{matrix}\right.\)
Trong không gian Oxyz, cho mặt cầu ( S ) : ( x - 1 ) 2 + y 2 + ( z + 2 ) 2 = 4 và đường thẳng d : x = 2 - t y = t z = m - 1 - t Tổng các giá trị thực của tham số m để d cắt (S) tại hai điểm phân biệt A,B và các tiếp diện của (S) tại A,B tạo với nhau một góc lớn nhất bằng
A. -1,5
B. 3
C. -1
D. -2,25
cho d:(x+1)/1=(y-1)/-1=(z+2)/2 va A(1;1;0), B(-1;0;1) Tim M thuoc d sao cho T=|MA-MB| dat gia tri lon nhat
Cho d : x - 1 2 = y + 2 1 = z - 1 - 1 và ∆ : x - 3 m 2 + 1 = y + m 1 = z - 1 . Tìm các giá trị của m để d ∥ ∆ .