Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Gọi d là ước chung của 2 số thuộc N*: a,b thỏa a+1/a + b+1/b thuộc Z
chứng minh: d bé hơn hoặc bằng căn a+b
cho a,b thuộc N*;a>b;ƯC(a;b)=1.C/t rằng ƯC(a+b; a-b)=1 hoặc =2
- Cho tam giác ABC cân tại B, AC = 10 cm, I là trung điểm của AC. Qua I kẻ IN // AB, IM // BC (N thuộc BC, M thuộc AB)
a) Chứng minh MN // AC. Tính MN?
b) Tứ giác AMNC, IMBN là hình gì? Vì sao
c) MN cắt BI tại O. Gọi K là điểm đối xứng của I qua N. Chứng minh A, O, K thẳng hàng
- Rút gọn: 1:(1+căn 2) + 1:(căn 2 + căn 3)+........+1(căn 99+ căn 100)
cho tam giác ABC đều , 2 đường cao BD và CE . a : chứng minh 4 điểm B;C;D;E cùng thuộc 1 đường tròn b: Gọi G là giao điểm của BD và CE . Chứng minh : 4 điểm A , E , D , G cùng thuộc 1 đường tròn . Tính Bán kính của đường tròn biết AB = 8 cm
1. cho a, b, c > 0 và a + b + c =< căn3
Tìm min D biết D = căn(a2 + 1/b2) + căn(b2 + 1/c2) + căn(c2 + 1/a2)
2. Cho a, b, c > 0 và abc = 1
Chứng minh a3/[(1+b)(1+c)] + b3/[(1+c)(1+a)] + c3/[(1+a)(1+b)]
3. Cho a, b, c là 3 cạnh của tam giác. Chứng minh ab + bc + ca =< (c + a - b)4/[a(a + b - c)] + (a + b - c)4/[b(b + c - a)] + (b + c - a)4/[c(a + c - b)]
4. Cho x, y, z > 0
chứng minh (xyz)/[(1+3x)(x+8y)(y+9z)(z+6)] =< 1/74
1/Cho 3 số nguyên tố: a, a+k, a+2k (a>3,k thuộc N*). Chứng minh k chia hết cho 6.
2/Giải phương trình: Căn(x-2) + Căn(y+2018) + Căn(z-2019) = 1/2(x+y+z).
3/Cho (O;R).Vẽ hai dây AB,CD cố định và vuông góc nhau. M thuộc cung AC và nằm trên (O).K,H lần lượt là hình chiếu của M trên CD,AB. H là giao điểm của 2 dây AB và CD.
a/Tính sin^2 gócMBA + sin^2 góc MAB + sin^2 góc MCD + sin^2 góc MDC.
b/Chứng minh:OK^2 = AH.(2R - AH).
c/Tìm vị trí của H để P = MA.MB.MC.MD có giá trị lớn nhất.
4/a/Cho (O;R) và đường thẳng d không đi qua (O).Lấy điểm M di chuyển được trên đường thẳng d. Từ M vẽ hai tiếp tuyến MP,MQ của (O). Chứng minh: Khi M thay đổi vị trí trên đường thẳng d thì dây cung PQ luôn đi qua 1 điểm cố định.
b/Cho tam giác có cạnh lớn nhất bằng 2. Người ta lấy 5 điểm phân biệt trong tam giác này. Chứng minh: Luôn tồn tại 2 điểm có khoảng cách không vượt quá 1.
TỚ ĐANG CẦN GẤP LẮM. MONG CÁC BẠN GIẢI HỘ GIÙM MÌNH VỚI GHEN.CẢM ƠN NHIỀU NHIỀU !!!!!
1. Tam giác ABC vuông tại A. D thuộc AB, E thuộc AC, M,N,P,Q lần lượt là trung điểm DE, DC, BC, BE. Chứng minh M, N, P, Q thuộc 1 đường tròn.
2. Tam giác ABC đường cao BH, CK. Chứng minh
a) 4 điểm B, C, H, K thuộc 1 đường tròn
b) HK < BC
3. Cho đường tròn tâm O đường kính AB. CD cắt AB tại I. H, K là chân đường vuông góc kẻ từ A, B đến CD. Chứng minh CH = BK
Bài 1. Cho tam giác ABC nội tiếp đường tròn (O), đường kính AB. Tính số đo các góc còn
lại của tam giác ABC nếu biết Ab = 40◦
Bài 3. Cho đường tròn (O;R), các điểm A,B thuộc (O) sao choAOB = 90◦
.
(a) Tính độ dài AB theo R.
(b) Gọi H là trung điểm AB. Chứng minh OH ⊥ AB.
Bài 4. Cho hình vuông ABCD có AB = a\(\sqrt{2}\)
(a) Chứng minh bốn điểm A,B,C,D cùng thuộc một đường tròn.
(b) Tính bán kính của đường tròn đi qua A,B,C,D theo a.
1.cho a>b>0 và ab=1. tìm GTNN của: (a^2+b^2)/(a-b)
2.cho x,y,z thuộc số thực dương thỏa mãn+y<=z. Chứng minh:(x^2+y^2+z^2)(1/x^2+1/y^2+1/z^2)>=27/2