câu 4: Cho tam giác ABC vuông cân tại A. Qua A kẻ đường thẳng d sao cho B và C nằm cùng phía đối với đường thẳng d. Kẻ BD vuông góc với đường thẳng d tại D (D in d) , kẻ CE vuông góc với đường thẳng d tại E(E in d) . Biết rằng độ dà cạnh AB = 5cm EC = 4cm . b) Chứng minh rằng AD = CE . c) Chứng minh rằng tổng BD²+CE²có giá trị ko đổi a) Tính độ dài cạnh AE=?
1. cho △ABC có góc A = 90 độ và AB=AC . qua A kẻ đường thẳng xy sao cho xy không cắt BC . kẻ BD và CE ⊥xy . chứng minh
a. △ABD = △ACE
b. DE = BD + CE
Cho tam giác ABC vuông tại A và AB = AC. Qua đỉnh A kẻ đường thẳng xy sao cho xy không cắt đoạn thẳng BC. Kẻ BD và CE vuông góc với xy ( D ∈ xy, E ∈ xy ).Chứng minh
a) Góc DAB = Góc ACE
b) ∆ABD = ∆CAE
c) DE = BD + CE
Cho tam giác ABC vuông cân tại A và AB=AC. Qua đỉnh A kẻ đường thẳng xy sao cho xy không cắt đoạn thẳng BC. Kẻ BD và CE vuông góc với xy (D thuộc xy; E thuộc xy). Chứng minh:
a) Góc DAB = Góc ACE
b) Tam giác ABD = Tam giác CAE
c) DE=BD+CE
2.Cho tam giác ABC có góc A=90 độ và AB=AC. Qua đỉnh A kẻ đường thẳng xy sao cho zy không cắt đoạn thẳng BC. Kẻ BD,CE vuông góc xy. C/m:
a. TG ABD= TG ACE
b. DE=DB + CE
c.Kẻ BF//xy cắt EC ở F.C/m: DE=BF
Cho tam giác ABC có AB = AC, kẻ BD vuông góc với AC, CE vuông góc với AB (D thuộc AC, E thuộc AB)
a) Chứng minh: BD=CE
b) Gọi O là giao điểm của BD và CE. Chứng minh tam giác OBE = tam giác OCD
c) Chứng minh AO là tia phân giác của góc BAC và AO vuông góc với BC
Tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB, lấy điểm E sao cho BD=CE. Từ D kẻ vuông góc với BC cắt AB ở M, từ E kẻ vuông góc với BC cắt AC tại N
a, Chứng minh MD=NE
b, MN giao DE tại I. CM I là trung điểm của DE
c, Từ C kẻ đường vuông góc với AC, từ B kẻ đường vuông góc với AB sao cho chúng cắt nhau tại O. chứng minh rằng đường thẳng vuông góc với MN tại I luôn đi qua 1 điểm cố định khi D thay đổi trên cạnh BC
Cho \(\Delta ABC\) , đường thẳng xy đi qua A song song với BC . Từ 1 điểm M trên BC , vẽ các đường thẳng song song với AB và AC cắt xy theo thứ tự tại D và E .
Chứng minh rằng :
a) \(\Delta ABC=\Delta MOE\)
b) ba đường thẳng AM , BD , CE cùng đi qua 1 điểm
Cho tam giác ABC, kẻ BD vuông góc với AC, kẻ CE vuông góc với AB. Trên tia đối của tia BD, lấy điểm H sao cho BH=AC, trên tia đối của tia CE, lấy điểm K sao cho CK=AB. Chứng minh rằng AH = AK.