cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
cậu vào đường link này sẽ rõ:http://olm.vn/hoi-dap/question/794605.html
Bài 1:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, chứng minh rằng: \(2\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge5\)
Bài 2:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0, z = max {x, y, z), chứng minh rằng: \(\sqrt{\frac{x}{y+z}}+2\sqrt{\frac{y}{z+x}}+3\sqrt[3]{\frac{z}{x+y}}\ge4\)
Bài 3:
Với x, y, z là các số thực không âm thỏa mãn xy + yz + xz > 0 và x + y + z = 2,chứng minh rằng: \(\frac{x}{\sqrt{4x+3yz}}+\frac{y}{\sqrt{4y+3xz}}+\frac{z}{\sqrt{4z+3xy}}\le1\)
Bài 4:
Với x, y, z là các số thực dương, chứng minh rằng: \(\frac{a}{\sqrt{a^2+15bc}}+\frac{b}{\sqrt{b^2+15ca}}+\frac{c}{\sqrt{c^2+15ab}}\ge\frac{3}{4}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình!!! PLEASE!!!
cho các số thực dương x,y,z thỏa mãn x+y+z=3 tìm gtnn của bt P=\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
giúp mình với cho x,y,z là các số thực lớn hơn -1. Chứng minh \(\frac{\left(1+x^2\right)}{1+y+z^2}+\frac{1+y^2}{1+z+x^2}+\frac{1+z^2}{1+x+y^2}>=2.\)giúp mình nhé!!!!
Cho các số thực x,y,z thỏa mãn \(x+y+z=1\) và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\)1 Gía trị của biểu thức \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Chứng minh rằng: \(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}>=\frac{3}{2}\)
Cho x, y, z là các số thực thỏa mãn \(\frac{1}{x+y}\)\(+\frac{1}{y+z}+\frac{1}{z+x}=\frac{4}{x+y+z}\). Chứng minh rằng \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)
Help me !
Cho Các số thực dương x, y, z thỏa mãn x +y +z=9 (x>1, y>2, Z>3)
Cmr \(\frac{x}{y^2-4y+5}+\frac{y-1}{z^2-6z+10}+\frac{z-2}{x^2-2x+2}\ge3\)
Cho các số thực dương \(x,y,z\)thỏa mãn \(x+y+z=3\)
Tìm \(GTNN\)của biểu thức \(P=\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
Đáp án bài này là \(\frac{3}{2}\)mà mình chưa biết giải, giải nhanh hộ mình nhé.
Cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2=3\).TIm GTNN của biểu thức \(A=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)