Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
LVMD™✓

Cho các số thực x,y,z khác 0 thỏa mãn xy/x+y = yz/y+z = zx/z+x chứng minh rằng x=y=z

Lê Ngọc Diệp
10 tháng 9 lúc 19:14
Để chứng minh x = y = z từ điều kiện cho trước, ta nghịch đảo hai vế của từng phân số để có được 1x+1y=1y+1z=1x+1z1 over x end-fraction plus 1 over y end-fraction equals 1 over y end-fraction plus 1 over z end-fraction equals 1 over x end-fraction plus 1 over z end-fraction1𝑥+1𝑦=1𝑦+1𝑧=1𝑥+1𝑧. Từ đó, ta suy ra 1x=1y=1z1 over x end-fraction equals 1 over y end-fraction equals 1 over z end-fraction1𝑥=1𝑦=1𝑧, và do x, y, z khác 0, ta có x = y = z.  Các bước chứng minh: Nghịch đảo các phân số: Cho $ \frac{xy}{x+y} = \frac{yz}{y+z} = \frac{zx}{z+x} $.
Vì x, y, z khác 0 nên các phân số này khác 0, ta có thể nghịch đảo:
$ \frac{x+y}{xy} = \frac{y+z}{yz} = \frac{z+x}{zx} $. 
Tách các phân số: $ \frac{x}{xy} + \frac{y}{xy} = \frac{y}{yz} + \frac{z}{yz} = \frac{z}{zx} + \frac{x}{zx} $.  Rút gọn: $ \frac{1}{y} + \frac{1}{x} = \frac{1}{z} + \frac{1}{y} = \frac{1}{x} + \frac{1}{z} $.  Sử dụng tính chất của đẳng thức: Từ $ \frac{1}{y} + \frac{1}{x} = \frac{1}{z} + \frac{1}{y} $, ta trừ $ \frac{1}{y} $ ở cả hai vế, thu được:
$ \frac{1}{x} = \frac{1}{z} $.
Tương tự, từ $ \frac{1}{z} + \frac{1}{y} = \frac{1}{x} + \frac{1}{z} $, ta trừ $ \frac{1}{z} $ ở cả hai vế, thu được:
$ \frac{1}{y} = \frac{1}{x} $. 
Kết luận: Kết hợp các kết quả trên, ta có $ \frac{1}{x} = \frac{1}{y} = \frac{1}{z} $.
Vì x, y, z khác 0, ta có thể suy ra $ x = y = z $
LVMD™✓
10 tháng 9 lúc 19:21


Các câu hỏi tương tự
Trần Việt Anh
Xem chi tiết
em la niem dau
Xem chi tiết
Đinh Thị Thảo Vi
Xem chi tiết
Conan Lê Minh
Xem chi tiết
Ruby Sweety
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
FFPUBGAOVCFLOL
Xem chi tiết
๛๖ۣۜH₂ₖ₇ツ
Xem chi tiết
Cô Nàng Lạnh Lùng
Xem chi tiết