\(Q=\left(x+y\right)\left(x^2-xy+y^2\right)+x^2+y^2\) (1)
\(\left(x+y\right)^2=2^2\) <=> \(x^2+2xy+y^2=4\) <=> \(x^2+y^2=4-2xy\)(2)
Thay 2 vào 1 ta được : \(Q=2\left(4-3xy\right)+4-2xy=12-8xy\)
Theo bđt côsi ta có : \(x+y\ge2\sqrt{xy}\) => \(2\ge2\sqrt{xy}\) => \(xy\le1\)
=> \(Q=12-8xy\ge12-8\cdot1=4\)
Dấu = xảy ra khi : \(x=y=1\)
Vậy ...