Ta có:
\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
\(\Rightarrow\left(x+\sqrt{x^2+2016}\right)\left(\sqrt{x^2+2016}-x\right)=x^2+2016-x^2=2016\)
Mà: \(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)
\(\Rightarrow\sqrt{x^2+2016}-x=\sqrt{y^2+2016}+y\)
\(\Rightarrow x+y=\sqrt{x^2+2016}-\sqrt{y^2+2016}\) (1)
Chứng minh tương tự ta có: \(\sqrt{y^2+2016}-y=\sqrt{x^2+2016}+x\)
\(\Rightarrow x+y=\sqrt{y^2+2016}-\sqrt{x^2+2016}\) (2)
Cộng (1) với (2) ta được:
\(2\left(x+y\right)=0\Leftrightarrow x+y=0\)