cho các số thực dương x,y,z thỏa mãn x + y + z = 3 . chứng minh rằng: 1/(sqrt(xy + x + y)) + 1/(sqrt(yz + y + z)) + 1/(sqrt(zx + z + x)) >= sqrt(3)
Cho x,y,z là các số dương thỏa mãn x+y+z=1. Chứng minh rằng
A= \(^{x4}\)+\(^{y4}\)+\(z4\)\(_{\ge}\)\(\frac{1}{27}\)
a)Chứng minh x3 + y3 ≥xy(x+y) với x,y≥0
b)Cho x,y,z>0 thỏa mãn xyz=1
CMR:\(\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\le1\)
a, Phân tích thành nhân tử (x+y+z)3-x3-y3-z3
b, Cho các số x, y, z thỏa mãn với điều kiện : x+y+z=1 và x3+y3+z3=1
c, Tính giá trị của biểu thức : A= x2001+ y2001+ z2001
Cho x, y, z là các số thực dương thỏa mãn \(x+y+z=18.\)
Chứng minh rằng: \(\frac{y+z+5}{1+x}+\frac{z+x+5}{1+y}+\frac{x+y+5}{1+z}\ge\frac{51}{7}\)
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
Cho x,y,z là ba số thực dương thỏa mãn 4x^2 +3(y^2 +z^2)+6xyz=4
Chứng minh rằng 2x+can3 (y+z)<=3
cho các số thực dương x, y, z thỏa mãn: x + y + z = 3.
Chứng minh rằng: \(\frac{1}{\sqrt{xy+x+y}}+\frac{1}{\sqrt{yz+y+z}}+\frac{1}{\sqrt{zx+z+x}}\ge\)\(\sqrt{3}\)
Cho x,y,z là các số thực dương thỏa mãn : xyz = 2 . Chứng minh rằng x^3 + y^3 + z^3 > a.căn(b + c) + b.căn(a + c) + c.căn(a + b)