Cho x,y,z là các số thực dương thỏa mãn : x+y+z=xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
Cho 3 số thực dương x, y, z thỏa mãn x+y+z=1
Chứng minh rằng \(\dfrac{\sqrt{xy+z}+\sqrt{2x^2+2y^2}}{1+\sqrt{xy}}\ge1\)
cho các số thực dương x,y,z thỏa mãn x + y + z = 3 . chứng minh rằng: 1/(sqrt(xy + x + y)) + 1/(sqrt(yz + y + z)) + 1/(sqrt(zx + z + x)) >= sqrt(3)
Cho x,y là các số thực dương thỏa mãn: (x+1)(y+1)=4xy
Chứng minh rằng: \(\frac{1}{\sqrt{3x^2+1}}+\frac{1}{\sqrt{3y^2+1}}\le1\)
Cho x,y là các số thực dương thoả mãn 1/x + 2/y = 2 . Chứng minh rằng: 5x^2 + y - 4xy + y^2 = 0 (*)
Giả sử x,y,z là những số thực dương thỏa mãn : 1/x+1/y+1/z=2.
Chứng minh rằng
√(x+1)+√(y+1)+√(z+1)≤√[5(x+y+z)].
Câu 1: Cho x,y là các số thực dương thõa mãn xy=1. Chứng minh rằng: \(\left(x+y+1\right)\left(x^2+y^2\right)+\frac{4}{x+y}\ge8\)
Cho x,y,z là các số thực dương thỏa mãn xy+yz+zx=1
Chứng minh rằng
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}+\frac{1}{1+z^2}\ge\frac{2}{3}\left(\frac{x}{\sqrt{1+x^2}}+\frac{y}{\sqrt{1+y^2}}+\frac{z}{\sqrt{1+z^2}}\right)^3\)