Cho hai số thực dương a, b thỏa mãn a + b + 3ab = 1. Tìm giá trị lớn nhất của biểu thức A = \(\sqrt{1-a^2}+\sqrt{1-b^2}+\frac{3ab}{a+b}\)
cho 2 số thực dương a,b thỏa mãn: a+b+3ab=1
tìm GTLN của P=\(\frac{12ab}{a+b}-a^2-b^2\)
Cho a,b là các số thực dương thỏa mãn a+b=2 .Tìm giá trị nhỏ nhất của biểu thức A= a3+b3+\(\frac{6}{a^2+b^2}\)+3ab
Cho hai số thực dương a, b thỏa mãn \(a+b\le3\). Tìm giá trị nhỏ nhất của biểu thức:
\(A=\frac{1}{3ab}+\frac{1}{2}\sqrt{\frac{3}{b+1}}\)
Bài 1: Cho các số thực dương a,b,c thỏa mãn các điều kiện \(\left(a+c\right)\left(b+c\right)=4c^2\). Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức
\(P=\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Bài 2: Cho x,y,z thỏa mãn x+y+z=0 và \(x^2+y^2+z^2=1\). Tìm GTLN của biểu thức \(P=x^5+y^5+z^5\)
Bài 3: Cho a,b,c dương thỏa mãn \(a+b+c=1.\)Tìm Min
\(P=2020\left(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\right)+\frac{1}{3\left(a^2+b^2+c^2\right)}\)
Bài 4: Cho a,b,c là các số thực không âm thỏa mãn điều kiện a+b+c=3. Tìm GTLN của biểu thức \(P=a\sqrt{b^3+1}+b\sqrt{c^3+1}+c\sqrt{a^3+1}\)
1,cho các số thực a,b,c ko âm thỏa mãn : a+b+c=3. Tìm GTLN của biểu thức : Q= (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)
2,cho số thực \(a\ge4\).Tìm GTNN của biểu thức S= \(a+\frac{1}{a}\)
Cho ba số thực dương a,b,c thỏa mãn a+b+c=1. Tìm GTLN của biểu thức
P=\(\frac{a}{9a^3+3b^2+c}+\frac{b}{9b^3+3c^2+a}+\frac{c}{9c^3+3a^2+b}\)
Cho hai số thực dương a,b thỏa mãn \(a^2+b^2=1\)
Tìm GTNN và GTLN của biểu thức \(A=\frac{3a^2+3b^2+14ab}{1+2ab+2b^2}\)
a,b,b là các số thực dương thỏa mãn a+b+c=3
Tìm GTLN của biểu thức P = 2(ab+bc+ac) - abc