Chương 4: BẤT ĐẲNG THỨC, BẤT PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Khánh Ngọc

Cho các số thực a,b,c thỏa mãn \(a+b+c=1.\)

Chứng minh rằng: \(8abc-8\le\left(ab+bc+ca+1\right)^2\)

Nguyễn Việt Lâm
21 tháng 8 2020 lúc 15:12

- Nếu cả 3 số đều ko âm thì \(abc\le\frac{1}{27}\Rightarrow VT< 0\) BĐT luôn đúng

- Nếu 2 trong 3 số không âm thì \(abc\le0\Rightarrow VT< 0\) BĐT luôn đúng

Do đó ta chỉ cần chứng minh trong trường hợp 2 số âm, 1 số dương

Không mất tính tổng quát, giả sử \(\left\{{}\begin{matrix}c>0\\a;b< 0\end{matrix}\right.\) đặt \(\left\{{}\begin{matrix}a=-p\\b=-q\end{matrix}\right.\) \(\Rightarrow p;q;c>0\)

\(\Rightarrow c-p-q=1\Rightarrow c=p+q+1\)

BĐT trở thành: \(8pq\left(p+q\right)-8\le\left[\left(p+q\right)^2+p+q-pq-1\right]^2\)

Đặt \(\left\{{}\begin{matrix}p+q=x>0\\pq=y>0\end{matrix}\right.\) \(\Rightarrow x^2\ge4y\)

Ta cần c/m: \(8y\left(x+1\right)-8\le\left(x^2+x-y-1\right)^2\)

\(\Leftrightarrow x^4+2x^3-2x^2y-x^2-10xy-2x+y^2-6y+9\ge0\)

\(\Leftrightarrow x^4+2x^3-2x^2y-2x^2-10xy-2x+8+\left(y-1\right)^2+\left(x^2-4y\right)\ge0\)

Do \(\left(y-1\right)^2+\left(x^2-4y\right)\ge0\) nên ta chỉ cần chứng minh:

\(x^4+2x^3-2x^2y-2x^2-10xy-2x+8\ge0\)

\(\Leftrightarrow x^4+2x^3-2x^2\left(\frac{x^2}{4}\right)-2x^2-10x\left(\frac{x^2}{4}\right)-2x+8\ge0\)

\(\Leftrightarrow x^4-x^3-4x^2-4x+16\ge0\)

\(\Leftrightarrow\left(x-2\right)^2\left(x^2+3x+4\right)\ge0\) (luôn đúng với \(x>0\))

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}x=2\\y=1\end{matrix}\right.\) \(\Leftrightarrow p=q=1\) hay \(\left(a;b;c\right)=\left(-1;-1;3\right)\) và hoán vị

//Hơi trâu bò :(


Các câu hỏi tương tự
Tùng Trần Sơn
Xem chi tiết
lê thị hoài
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Hồng Anh
Xem chi tiết
Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
anh
Xem chi tiết
trần trang
Xem chi tiết
Gió
Xem chi tiết
loancute
Xem chi tiết