Bạn xem lại đề. Cho $a=b=c=1$ thì BĐT sai.
Bạn xem lại đề. Cho $a=b=c=1$ thì BĐT sai.
Cho 3 số thực dương a,b,c. CMR \(\frac{a^2}{\sqrt{3a^2+8b^2+14ab}}+\frac{b^2}{\sqrt{3b^2+8c^2+14bc}}+\frac{c^2}{\sqrt{3c^2+8a^2+14ac}}\ge\frac{1}{5}\left(a+b+c\right)\)
Giúp e mấy bài này với ạ.
1) Cho a, b, c là các số thực không âm thỏa mãn ab + bc + ca = 1.
Chứng minh rằng: \(\frac{3ab+1}{a+b}+\frac{3bc+1}{b+c}+\frac{3ac+1}{c+a}\ge4.\)
2) Cho các số thực dương a, b, c sao cho \(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}\le1\)
Chứng minh rằng: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\ge125.\)
3) Cho ba số thực dương a, b, c thỏa mãn a + b + c = 3. Tìm giá trị nhỏ nhất của biểu thức
P = \(\frac{a^2+b^2}{9-ab}+\frac{b^2+c^2}{9-bc}+\frac{c^2+a^2}{9-ca}.\)
4) Cho a, b, c là các số thực dương. Chứng minh rằng: \(\sqrt{\frac{bc}{a\left(3b+a\right)}}+\sqrt{\frac{ac}{b\left(3c+b\right)}}+\sqrt{\frac{ab}{c\left(3a+c\right)}}\ge\frac{3}{2}\)
Cho ba số thực dương a, b, c. Chứng minh rằng:
a) \(\left(a+\frac{4b}{c^2}\right)\left(b+\frac{4c}{a^2}\right)\left(c+\frac{4a}{b^2}\right)\ge64\)
b) \(\frac{a^3}{b}+\frac{b^3}{c}+\frac{c^3}{a}\ge ab+bc+ca\)
cho a, b, c là các số dương cm \(\left(a^3+b^3+c^3\right)\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\).\(\ge\frac{3}{2}\left(\frac{b+c}{a}+\frac{c+a}{b}\frac{a+b}{c}\right)\)
Cho a,b,c>0 và \(a+b+c=\frac{3}{2}\).CMR:
\(ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\ge\frac{27}{8}\)
1. Giải ft
3(\(\sqrt{6-5x}-\sqrt{x+3}\) = 3x2 - x-5.
2. Cho a,b,c là các số thực dương sao cho a + b + c = 1. Chứng minh rằng :
\(\frac{a}{\left(b+c\right)^2}+\frac{b}{\left(c+a\right)^2}+\frac{c}{\left(a+b\right)^2}\ge\frac{9}{4}.\)
Cho a,b,c >0 abc=1. CMR \(\frac{a^4}{b^2\left(c+a\right)}+\frac{b^4}{c^2\left(a+b\right)}+\frac{c^4}{a^2\left(b+c\right)}\ge\frac{a+b+c}{2}\)
1) \(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\ge\frac{3}{2}\)
2) với \(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\) chứng minh \(\frac{a^3}{b\left(2c+a\right)}+\frac{b^3}{c\left(2a+b\right)}+\frac{c^3}{a\left(2b+c\right)}\ge1\)
Cho các số thực a,b,c thỏa mãn \(a>1,b>\frac{1}{2},c>\frac{1}{3}\) và \(\frac{1}{a}+\frac{2}{2b+1}+\frac{3}{3c+2}\ge2\). Tìm giá trị lớn nhất của biểu thức
\(P=\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\)