Đặt \(\left(a;b;c\right)=\left(\frac{x}{y};\frac{y}{z};\frac{z}{x}\right)\)
\(\Rightarrow E=\frac{x^2}{z^2+2xy}+\frac{y^2}{x^2+2yz}+\frac{z^2}{y^2+2zx}\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+2xy+2yz+2zx}=1\)
\(E_{min}=1\) khi \(x=y=z\) hay \(a=b=c=1\)