a+b = c+d => a = c+d-b
Thay vào ab+1 = cd
=> (c+d-b).b+1 = cd
<=> cb+db-cd+1-b2 = 0
<=> b(c-b)-d(c-b)+1 = 0
<=> (b-d)(c-b) = -1
a,b,c,d,nguyên nên b-d và c-b nguyên
Mà (b-d)(c-b) = -1 nên ta xét 2 trường hợp:
TH1: b-d = -1 và c-b = 1
<=> d = b+1 và c = b+1
=> c = d
TH2: b-d = 1 và c-b = -1
<=> d = b-1 và c = b-1
=> c = d
Vậy c = d.