Vì \(42 = 2 \cdot 3 \cdot 7\), ta cần chứng minh biểu thức chia hết cho 2, 3 và 7.
1. Chia hết cho 2:
Vì số mũ 49 lẻ nên:
\(x^{49} \equiv x \left(\right. m o d 2 \left.\right) .\)
Suy ra:
\(a^{49} + b^{49} + c^{49} \equiv a + b + c = 2100 \equiv 0 \left(\right. m o d 2 \left.\right) .\)
Vậy biểu thức chia hết cho 2.
2. Chia hết cho 3:
Xét các số dư mod 3:
Vậy với mọi \(x\), ta có \(x^{49} \equiv x \left(\right. m o d 3 \left.\right)\).
Suy ra:
\(a^{49} + b^{49} + c^{49} \equiv a + b + c = 2100 \equiv 0 \left(\right. m o d 3 \left.\right) .\)
Nên biểu thức chia hết cho 3.
3. Chia hết cho 7:
Theo định lí Fermat nhỏ: nếu \(\left(\right. x , 7 \left.\right) = 1\) thì
\(x^{6} \equiv 1 \left(\right. m o d 7 \left.\right) .\)
Do đó:
\(x^{49} = x^{6 \cdot 8 + 1} \equiv \left(\right. x^{6} \left.\right)^{8} \cdot x \equiv 1^{8} \cdot x \equiv x \left(\right. m o d 7 \left.\right) .\)
Nếu \(7 \mid x\) thì hiển nhiên \(x^{49} \equiv x \equiv 0 \left(\right. m o d 7 \left.\right)\).
Vậy với mọi \(x\), ta có \(x^{49} \equiv x \left(\right. m o d 7 \left.\right)\).
Suy ra:
\(a^{49} + b^{49} + c^{49} \equiv a + b + c = 2100 \equiv 0 \left(\right. m o d 7 \left.\right) .\)
Kết luận:
Biểu thức \(a^{49} + b^{49} + c^{49}\) chia hết cho \(2 , 3 , 7\).
Vậy nó chia hết cho \(\text{BCNN} \left(\right. 2 , 3 , 7 \left.\right) = 42\).
\(\).