Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 1.Tìm các số thực xthỏa mãn:a. |3 − |2x − 1| = x − 1b. |x − 1| + |2x − 2| + |4x − 4| + |5x − 5| = 36c. |x − 2| + |x − 3| + ... + |x − 9| = 1-x
Bài 2. Cho các số nguyên a, b, c thỏa mãn a + b + c = 0. Chứng minh rằng: |a| + |b| + |c| là một số chẵn.
Bài 3. Cho các số nguyên a, b, c thỏa mãn a + b + c = 2020. Tổng A = |a − 1| + |b + 1| + |c − 2020|có thể bằng 2021 được không? Vì sao?
Bài 4. Cho các số nguyên a, b, c. Chứng minh rằng: |a − 2b| + |4b − 3c| + |c − 3a| là một số chẵn
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2=0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Bài 1. Tìm các số thực x thỏa mãn: |x − 1| + |x + 2| = x − 3
Bài 2. Tìm các số thực x thỏa mãn: |3 + |x − 1|| = 2x − 1
Bài 3. Cho các số nguyên a, b, c bất kỳ. Chứng minh rằng S = |a − b| + |b − c| + |c − a| là một số
chẵn.
Bài 4. Chứng minh rằng: |x − 2| + |x + 1| > 3 (Gợi ý: Sử dụng |a| + |b| > |a + b| để khử x)
Cho các số nguyên dương a; b; c thỏa mãn a+ b+ c= 2016
Chứng minh rằng giá trị biểu thức sau không phải là một số nguyên
A= a/2016- c +b/2016- a +c/2016- b
Cho a,b các số nguyên thỏa mãn a<b;0<b và n =số tự nhiên khác 0
Cho a,b,c số nguyên dương và S=a/a+b +b/b+c + c/c+a
Chứng minh rằng S không có giá trị nguyên