Áp dụng BĐT cô si
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2z\)
\(\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng vế với vế của ba BĐT :
=> \(A\ge x+y+z=1\)
Vậy ....
Áp dụng BĐT cô si
\(\frac{xy}{z}+\frac{yz}{x}\ge2y\)
\(\frac{yz}{x}+\frac{xz}{y}\ge2z\)
\(\frac{xz}{y}+\frac{xy}{z}\ge2x\)
Cộng vế với vế của ba BĐT :
=> \(A\ge x+y+z=1\)
Vậy ....
Cho x ; y; z là các số dương TM : xy + yz + xz = 670 CMR :
\(\frac{x}{x^2-yz+2010}+\frac{y}{y^2-xz+2010}+\frac{z}{z^2-xy+2010}\ge\frac{1}{x+y+z}\)
Cho x,y,z là 3 số thực dương thỏa mãn xyz=1. Chứng minh:
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{x+1}>=\frac{3}{2}\)
Cho các số dương x,y,z thỏa mãn xy+yz+zx=3. Tìm GTNN của:
A= \(\frac{yz}{x^3+2}+\frac{xz}{y^3+2}+\frac{xy}{z^3+2}\)
Mình là thành viên mới, rất mong được học hỏi. Xin hãy giúp đỡ mình ạ!!!
cho x,y,z là 3 số dương tm \(^{x^2+y^2+z^2=2016}\).Tìm GTNN P=\(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\)
Cho các số thực dương x,y,z t/m xy+yz+xz=1
Tìm min của \(P=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\)
cho các số thực dương x,y,z tm x+y+z<=1
tìm Min P=\(\frac{1}{xz}+\frac{1}{yz}\)
Tìm GTNN
\(A=\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\)với x,y,z là các số dương và \(x^2+y^2 +z^2=1\)
cho 3 số thực dương z;y;z thỏa mãn x+y+z<= 3/2
tìm GTNN của biểu thức:
\(p=\frac{z\left(xy+1\right)^2}{y^2\left(yz+1\right)}+\frac{x\left(yz+1\right)^2}{z^2\left(zx+1\right)}+\frac{y\left(xz+1\right)^2}{x^2\left(xy+1\right)}\)
Cho các số dương x,y,z thỏa mãn điều kiện xy + yz + xz =671
Cmr \(\frac{x}{x^2-yz-2013}+\frac{y}{y^2-xz-2013}+\frac{z}{z^2-yx-2013}\ge\frac{1}{x+y+z}\)
Cho các số dương x,y,z thỏa mãn điều kiện xy + yz + xz =671
Cmr \(\frac{x}{x^2-yz-2013}+\frac{y}{y^2-xz-2013}+\frac{z}{z^2-yx-2013}\ge\frac{1}{x+y+z}\)