mọi người giúp mình một trong hai bài với ạ, thanks
Bài 1: cho các số dương x, y thay đổi tm đk: x+y=1. Tìm GTNN của biểu thức:
\(P=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
bài 2:cho hàm số f(n) xác định trên N thỏa:
f(n)=n-3 nếu n\(\ge1000\)
f(n)=f[f(n+5)] nếu n<1000.
Chứng minh rằng:
\(\frac{f\left(30\right)+f\left(4\right)}{2}+f\left(95\right)=1995\)
Tìm GTNN của biểu thức :
\(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)trong đó x,y la các số dương thay đổi , thõa mãn x+y=1
Giúp nha
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Xét các số thực dương x; y; z thay đổi sao cho \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)=0\)
1, Chứng minh rằng \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\ge1\)
2, Tìm giá trị lớn nhất của biểu thức \(P=x^2+y^2+z^2-\frac{xy}{x+y}-\frac{yz}{y+z}-\frac{zx}{z+x}\)
cho 3 số x;y;z thỏa mãn x+y+z=3.Tìm Min của biểu thức:
P=\(\frac{\left(x+1\right)^2\left(y+1\right)^2}{z^2+1}+\frac{\left(y+1\right)^2\left(z+1\right)^2}{x^2+1}+\frac{\left(z+1\right)^2\left(x+1\right)^2}{y^2+1}\)
cho các số thực dương x,y tm \(\left(x+y-1\right)^2=xy\)
Tìm min \(P=\frac{1}{xy}+\frac{1}{x^2+y^2}+\frac{\sqrt{xy}}{x+y}\)
x, y là 2 số không âm thay đổi. Tìm GTLN, GTNN của biểu thức:
\(F=\frac{\left(x-y\right)\left(1-xy\right)}{\left(1+x\right)^2\left(1+y\right)^2}\)
cho x+2y và 2x+y là 2 số thực dương khác 2.tìm Min của biểu thức:
\(P=\frac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\frac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(2y+x-2\right)^2}-3\left(x+y\right)\)
Cho x, ,y là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{xy}{x^2+y^2}+\left(\frac{1}{x}+\frac{1}{y}\right)\sqrt{2\left(x^2+y^2\right)}\)