Cho các số dương a,b,c thay đổi thỏa mãn a+b+c=4
CChứng minh căn (a+b) +căn(b+c) +căn (c+a) >4
cho a,b,c là các số thực dương thỏa mãn a+b+c=1
cm: căn(a+b)+căn(b+c)+căn(c+a)<= căn6
Cho ba số dương a, b, c thỏa mãn a + b + c = 1. Tìm giá trị lớn nhất của biểu thức S = Căn ( a+b) + căn(b+ c) + căn(c+ a)
cho ba số thực dương a,b,c thỏa mãn 1/a+1/b+1/c=3.
c/m: căn (a+b) +căn(b+c)+căn(c+a)>=3 căn 2
Cho a; b; c; d là 4 số dương thỏa mãn ab.cd=1. CMR: (căn(1+a)+căn(1+b)).(căn(1+c)+căn(1+d))>=8
cho các số thực dương a,b,c thỏa mãn 1/a+1/b+1/c<=3.Tìm GTLN của biểu thức P=1/(căn a^2-ab+3b^2+1)+1/(căn b^2-bc+3c^2+1)=1/(căn c^2-ca+3a^2+1)
cho a,b,c là các số không âm thỏa mãn : a + b + c = 3 . Tìm giá trị nhỏ nhất P = căn(3a+1) + căn(3b+1) + căn(3c+1)
cho ba số thực dương a,b,c thỏa mãn a+b+c = 2017. tìm GTLN của
Q = căn(2017a +bc) + căn(2017b + ca) + căn(2017c + ab)
cho a,b,c là 3 số thực dương thỏa 1/a+1/b+1/c+3
c/m:căn (a+b)+căn(b+c)+căn(c+a) >=3 căn 2