cho các số a,b,c thoả mãn a+b+c=3/2
CMR a2+b2+c2=3/4
momg các bạn giải giúp mình , mình đang rất gấp
BẤT ĐẲNG THỨC CÔSI
Cho a,b,c là các số dương thỏa mãn a+b+c=3. Cmr:
a^3/(b+c)^2 + b^2/(c+a)^2 + c^3/(a+b)^2 >= 3/4
Thks nhiều nha
Cho các số nguyên a,b,c thoả mãn :
\(a^2+b^2=c^2\) . CMR : abc chia hết cho 3
1> cho a,b,c là các số hữu tủ khác 0 thoả mãn a+b+c=0. CMR: M= 1/a^2+ 1/b^2 + 1/c^2
2> rút gọn biểu thức sau và tìm giá trị nguyên của x để biểu thức có giá trị nguyên
M = ( x^2-2x / 2x^2+8 - 2x^2 / 8-4x+2x^2-x^3 ).( 1 - 1/x - 2/x^2 )
3> cho a,b,c là các số không âm và không lớn hơn 2 thoả mãn a+b+c=0. CMR a^2 + b^2 + c^2 <_ 5
Bài 1: Cho a, b, c là các số nguyên thoả mãn:
a+b+c=2016
CMR: A= a2+b2+c2 là một số chẵn
Bài 2: Cho x, y thuộc R. Đặt a = x2 + 6y + 5 và b= y2 - 2x + 6
CMR: Trong 2 số a và b phải có ít nhất một số dương.
Giúp mình với các bạn. Thanks nhiều.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
a)Tìm số tự nhiên n để \(n^2-3n+5\) chia hết cho \(n-2\)
b)Cho 3 số a,b,c thoả mãn a+b+c=0.CMR:
\(2\left(a^5+b^5+c^5\right)=5abc\left(a^2+b^2+c^2\right)\)
Mong các bạn giúp đỡ
Ai giải giúp mk với bt khó v :<
À mà chỉ giải bằng bđt AM-GM nhé, nếu có thêm bổ đề thì chứng minh chi tiết hộ mk :)
1. Cho ba số thực dương a,b,c thoả mãn a+b+c=3
CMR : \(a.\sqrt[3]{3-b+c}+b.\sqrt[3]{3-c+a}+c.\sqrt[3]{3-a+b}\le3.\sqrt[3]{3}\)
2. Cho 3 số thực dương a,b,c thoả mãn abc=2
CMR: \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
3. Cho 2 số thực dương x,y thoả mãn x+y+xy=3
CMR: \(\sqrt{\frac{x^2}{x^2+3}}+\sqrt{\frac{y^2}{y^2+3}}\le1\)