cho \(\dfrac{cy-bz}{x}=\dfrac{az-cx}{y}=\dfrac{bx-ay}{z}\) chứng minh rằng :\(\dfrac{a}{x}=\dfrac{b}{y}=\dfrac{c}{z}\)
Cho biết : \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) với a,b,c \(\ne\) 0
Chứng minh rằng \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\)
cho các số a, b, c khác 0, \(\dfrac{bz-cy}{a}=\dfrac{cx-az}{a}=\dfrac{ay-bx}{c}\)cmr: \(\dfrac{x}{a}=\dfrac{y}{b}\)=\(\dfrac{z}{c}\)
\(\dfrac{bz-cy}{z}=\dfrac{cx-az}{b}=\dfrac{ay-bx}{c}\) (1) CMR: \(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) (*)
Các số a,b,c,x,y,z thỏa mãn điều kiện \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\).CMR :\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
Các số a,b,c,x,y,z thỏa mãn điều kiện \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}\). CMR : \(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\).
Cho 3 số a,b,c khác 0 thỏa mãn: (ay - bx)/c= (cx-az)/b=(bz-cy)/a. Chứng minh : (ax+by+cz)^2=(a^2+b^2+c^2)(x^2+y^2+z^2)
bz—cy/a=cx—az/b=ay—bx/c (a,b,c#0). Chứng minh rằng x/a=y/b=z/c
a,Cho các số a,b,c khác 0,bz-cy/a=cx-az/b=ay-bx/c
Cm rang x/a=y/b=z/c
b,P(x)=ax2+bx+c thỏa mãn P(x):7 khác x thuộc z
Cm rằng a,b,c đều chia hết cho 7