Ta có: \(b;c\in\left[0;1\right]\Rightarrow\hept{\begin{cases}b^2\le b\\c^3\le c\end{cases}}\) (1)
\(a;b;c\in\left[0;1\right]\Rightarrow\hept{\begin{cases}a-1\le0\\b-1\le0\\c-1\le0\end{cases}}\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)\le0\)
\(\Leftrightarrow a+b+c-ab-bc-ca+abc-1\le0\)
\(\Leftrightarrow a+b+c-ab-bc-ca\le1\)(2)
Từ (1) và (2) suy ra: \(a+b^2+c^3-ab-bc-ca\le a+b+c-ab-bc-ca\le1\)
=> ĐPCM. Dấu "=" xảy ra <=> (a;b;c) là 1 trong các hoán vị của (0;1;1) hoặc (0;0;1).