Tìm tập xác định D của hàm số y = l o g ( x 2 - x - 2 ) (1)
Cho hai hàm số f ( x ) = l o g 2 x , g ( x ) = 2 x . Xét các mệnh đề sau:
I. Đồ thị hai hàm số đối xứng với nhau qua đường thẳng y = x
II. Tập xác định của hai hàm số trên là R
III. Đồ thị hai hàm số cắt nhau tại đúng 1 điểm
IV. Hai hàm số đều đồng biến trên tập xác định của nó
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A. 2
B. 3
C. 1
D. 4
Trong bốn hàm số y = x + 1 x + 2 , y = 5 x + 6 x 2 x , y = π 6 x , y = log 3 x có bao nhiêu hàm số đồng biến trên mỗi khoảng xác định của nó?
A. 1
B. 3
C. 2
D. 4
Tìm tập xác định của hàm số y = log ( x 2 - x - 2 ) ( 1 )
A . ( - ∞ ; 1 ) ∪ ( 2 ; + ∞ )
B . ( - ∞ ; 2 )
C . ( 1 ; + ∞ )
D . ( - 1 ; 1 )
Có bao nhiêu hàm số trong các hàm số sau đây đồng biến trên tập xác định của nó: y = sin x , y = 2019 x , y = log 2 x 2 + 1 , y = x 5 + x 4 - 3 x 2 + 10 x - 3
A. 4
B. 3
C. 1
D. 2
Tìm tập xác định của hàm số y = log ( x 2 - x - 2 )
A. ( - ∞ ; - 1 ) ∪ ( 2 ; + ∞ )
B. ( - ∞ ; 2 )
C. ( 1 ; + ∞ )
D. (-1; 1)
trong các hàm số sau hàm số nào đồng biến trên R: A. y= 2x-1/x+2 B. y= -x^3+x^2-5x C. y= x^3+2x+1 D.-x^4-2x^2+3
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f '(x) như hình vẽ bên dưới. Xét hàm số g(x)=f(x^2-3) và các mệnh đề sau:
I. Hàm số có 3 điểm cực trị.
II. Hàm số g(x)đạt cực tiểu tại x=0
III. Hàm số g(x) đạt cực đại tại x=2
IV. Hàm số g(x) đồng biến trên khoảng (-2;0)
V. Hàm số g(x) nghịch biến trên khoảng (-1;1)
Có bao nhiêu mệnh đề đúng trong các mệnh đề trên?
A.1
B.4
C.3
D.2
Hàm số y=f(x) có bảng biến thiên ở bên. Trong các phát biểu dưới đây có bao nhiêu phát biểu đúng?
(*): y = 3 là tiệm cận ngang
(*): Tập xác định D = ℝ / 2
(*): Max y = 3 (*): Min y = -1
(*): x C Đ = 2