Cho (d1) y= 4mx - ( m + 5 ) ; (d2) y= ( 3m^2 + 1)x + m^2 - 4
a) tìm m để đồ thị (d1) đi qua M(2;3)
b. CM khi m thay đổi thì d1 luôn đi qua điểm A cố định d2 đi qua B cố định
c. khoảng cách AB = ???
d. Tìm m để d1 // d2
e. Tìm m để d1 cắt d2 . tìm giao điểm khi m=2
1 . Cho hai đường thẳng (d1):mx+(m-2)y+m+2=0 và (d2):(2-m)x+my-m-2=0
a) Tìm điểm cố định mà (d1) luôn đi qua và điểm cố định mà (d2) luôn đi qua
b) Chứng minh hai đường thẳng (d1) ,(d2) luôn cắt nhau tại một điểm I và khi m thay
đổi thì điểm I luôn thuộc một đường tròn cố định.
2 . Cho các số thực a, b, c, d thỏa mãn a > 1, b > 1, c > 1, d > 1. Chứng minh
\(\frac{a^2}{b-1}+\frac{b^2}{c-1}+\frac{c^2}{a-1}\ge16\)
Cho đường thẳng: d1 có pt y=4mx-m-5
d2 có pt y=(3m+1)2 x+m2-4
a)cm: m thay đổi thì d1, d2 luôn đi qua các điểm cố định tương ứng là A và B
b) tính khoangc cách AB
c) tìm m để d1\(//\)d2
d) tìm m để d1 cắt d2 tìm tọa độ giao điểm khi m=2
a) Cho hai đường thẳng (d1): y=x+2 và (d2): y=-1/3x+2. Vẽ (d1) và (d2) trên cùng một hệ trục tọa độ
b) Chứng minh đường thẳng y=(m-2)x+3 luôn đi qua một điểm cố định với mọi m. Tìm điểm cố định đó
Cho đường thẳng d 1 :y = mx + 2m - 1 (với m là tham số) và d 2 : y = x + 1
c) Chứng mình rằng đường thẳng d 1 luôn đi qua một điểm cố định với mọi giá trị của m.
Cho hai đường thẳng (d1):y=m(x+3) và (d2):y=(4m-5)x+3m
a.Tìm tất cả giá trị của m để hai đường thẳng vuông góc với nhau
b.Chứng minh rằng với mọi giá trị của m thì (d2) luôn đi qua một điểm cố định
cho đường thẳng D1 có phương trình : y=mx-3
D2 có phương trình : y = 2mx + 1 -m
a) Vẽ trên cùng 1 mặt phẳng tọa độ Oxy các đường thẳng D1 và D2 ứng với m =1 . Tìm tọa độ giao điểm B của chúng . Qua O viết phương trình đường thẳng vuông góc với D1 tại A
b) Chứng tỏ rằng : Đường thẳng D1 và D2 đều đi qua những điểm cố định . Tìm tọa độ điểm cố định đó
cho đường thẳng D1 có phương trình : y=mx-3
D2 có phương trình : y = 2mx + 1 -m
a) Vẽ trên cùng 1 mặt phẳng tọa độ Oxy các đường thẳng D1 và D2 ứng với m =1 . Tìm tọa độ giao điểm B của chúng . Qua O viết phương trình đường thẳng vuông góc với D1 tại A
b) Chứng tỏ rằng : Đường thẳng D1 và D2 đều đi qua những điểm cố định . Tìm tọa độ điểm cố định đó
Cho 2 đường thẳng (d1) : y=4x+2m-5
(d2): y=-3x+9-5m
a) CMR (d1) và (d2) luôn cắt nhau tại điểm A khi m thay đổi
b) CMR khi m thay đổi thì A luôn thuộc 1 đường cố định