Ta có: x - y - z = 0 suy ra x = y + z (1)
Thay (1) vào biểu thức A ta được:
A = \(\left(x+y\right)\left(zy-y^2-z^2\right)\)
= \(y^2z-y^3-yz^2+yz^2-y^2z-z^3\)
= \(-\left(y^3+z^3\right)\)
= - B
Vậy A và B là hai đa thức đối nhau.
Ta có: x - y - z = 0 suy ra x = y + z (1)
Thay (1) vào biểu thức A ta được:
A = \(\left(x+y\right)\left(zy-y^2-z^2\right)\)
= \(y^2z-y^3-yz^2+yz^2-y^2z-z^3\)
= \(-\left(y^3+z^3\right)\)
= - B
Vậy A và B là hai đa thức đối nhau.
Cho các đa thức A=xyz - xy^2 - xz^2; B= y^3 + z^3. Chứng minh rằng: nếu x-y-z=0 thì A và B là hai đa thức đối nhau
cho các đa thức: A= xyz-xy^2-xz^2; B=y^3+z^3. Chứng minh rằng nếu x-y-z=0 thì A và B là 2 đa thức đối nhau
Cho các đa thức \(A=xyz-xy^2-xz^2\)
\(B=y^3+z^3\)
Chứng minh rằng nếu x-y-z=0 thì A và B là hai đa thức đối nhau
Cho các đa thức A= xyz - xy^2 - z^2x
B= y^3 + z^3
Chứng minh rằng nếu x-y-z=0 thì A và B là hai đa thức đối nhau
Cho đa thức A=xyz-xy2-xz2,B=y3+z3
Chứng minh rằng nếu x-y-z=0 thì A và B là hai đa thức đối nhau
Cho các đa thức A=xyz-xy2-xz2 ; B=y3+z3
Chứng minh rằng nếu x-y-z=0 thì A và B là hai đa thức đối nhau
CHO ĐA THỨC A=\(XYZ-XY^2-XZ^2\) B=
CMR: NẾU X-Y-Z=0 THÌ A VÀ B LÀ HAI ĐA THỨC ĐỐI NHAU
197. Cho các đa thức \(A=xyz-xy^2-xz^2\)
\(B=y^3+z^3\)
Chứng minh rằng nếu x-y-z=0 thì A và B là hai đa thức đối nhau
Cho các đa thức A = \(xyz-xy^2-zx^2\) B = \(y^3+z^3\)
Chứng minh rằng nếu x - y - z = 0 thì A và B là hai đa thức đối nhau