Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ĐTT

Cho các cặp số nguyên \(x;y;z;t\) thỏa mãn \(\dfrac{x+y}{y+z}=\dfrac{y+z}{z+t}=\dfrac{z+t}{t+x}=\dfrac{t+x}{x+y}\)

Chứng tỏ rằng biểu thức \(A=\left(\dfrac{y+z}{x+t}\right)^{2013}+\left(\dfrac{y+t}{x+y}\right)^{2014}\) có giá trị nguyên

Akai Haruma
31 tháng 12 2018 lúc 21:02

Lời giải:

\(\frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}\)

\(\Rightarrow (\frac{x+y}{y+z})^4=(\frac{y+z}{z+t})^4=(\frac{z+t}{t+x})^4=(\frac{t+x}{x+y})^4=\frac{x+y}{y+z}.\frac{y+z}{z+t}.\frac{z+t}{t+x}.\frac{t+x}{x+y}=1\)

\(\Rightarrow \left[\begin{matrix} \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=1\\ \frac{x+y}{y+z}=\frac{y+z}{z+t}=\frac{z+t}{t+x}=\frac{t+x}{x+y}=-1\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix} x=y=z=t\\ x+y+z+t=0\end{matrix}\right.\)

Nếu $x=y=z=t$ thì:

\(A=\left(\frac{y+z}{x+t}\right)^{2013}+\left(\frac{y+t}{x+y}\right)^{2014}=\left(\frac{x+x}{x+x}\right)^{2013}+\left(\frac{x+x}{x+x}\right)^{2014}=1+1=2\in\mathbb{Z}\)

Nếu $x+y+z+t=0$ thì:

\(y+z=-(x+t); y+t=-(x+y)\)

\(\Rightarrow A=(-1)^{2013}+(-1)^{2014}=(-1)+1=0\in\mathbb{Z}\)

Vậy biểu thức $A$ luôn có giá trị nguyên.


Các câu hỏi tương tự
dream XD
Xem chi tiết
Annie Scarlet
Xem chi tiết
阮芳邵族
Xem chi tiết
Yêu các anh như ARMY yêu...
Xem chi tiết
dream XD
Xem chi tiết
Đậu Thị Tường Vy
Xem chi tiết
crewmate
Xem chi tiết
Quỳnh Nguyễn
Xem chi tiết
kiwi nguyễn
Xem chi tiết