tìm so nguyên tố p và các số dương x y sao cho
p-1=2x(x+2)
p^2-1=2y(y+2)
tìm so nguyên tố p và các số dương x y sao cho
p-1=2x(x+2)
p^2-1=2y(y+2)
Cho a,b,c thuộc khoảng 0 đến 1.
Chứng minh bất đẳng thức :
a - b^2 - c^3 -ab - bc - ca =< 1
Chứng minh bất đẳng thức ab/(a+b) + bc/(b+c) + ca/(c+a) >= 3/2
Cho 3 số thực dương a, b, c thỏa mãn điều kiện a+b+c=3. Chứng minh bất đẳng thức sau \(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca} \geq \dfrac{3}{2}\)
cho a,b,c la ba so thuc duong thoa man dieu kien a+b+c=1
chung minh rang P=\(\sqrt{\frac{ab}{c+ab}}+\sqrt{\frac{bc}{a+bc}}+\sqrt{\frac{ca}{b+ca}}\le\frac{3}{2}\)
Cho a,b,c là ba số thực dương .Chứng minh bất đẳng thức :
(a^3+b^3+c^3)/2abc +(a^2+b^2)/(ab+c^2) + (b^2+c^2)/(bc+a^2) +(c^2+a^2)/(ca+b^2) >= 9/2
Với ba số a, b, c không âm, chứng minh bất đẳng thức: a + b + c ≥ a b + b c + c a . Hãy mở rộng kết quả cho trường hợp bốn số, năm số không âm.
Chứng minh bất đẳng thức :
a) \(3\left(a^4+b^4+c^4\right)\ge\left(a+b+c\right)\left(a^3+b^3+c^3\right)\)
b) \(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)với mọi a, b, c > 0
(Không dùng bất đẳng thức Cô-si)
Cho các số a,b,c∈[1;2] Chứng minh bất đẳng thức:\(\frac{a^2+b^2}{ab}+\frac{b^2+c^2}{bc}+\frac{c^2+a^2}{ca}\le7\)
cho a,b,c là các số thực dương thoả mãn abc=1 chứng minh bất đẳng thức:
\(\frac{1}{ab+a+2}+\frac{1}{bc+b+2}+\frac{1}{ca+a+2}\le\)\(\frac{3}{4}\)