a) đế C và D cùng tồn tại thì:
\(\hept{\begin{cases}n-1\ne0\\n+1\ne0\end{cases}}\) <=> \(\hept{\begin{cases}n\ne1\\n\ne-1\end{cases}}\)
Vậy....
b) (n là số nguyên)
để C là số nguyên thì: 2 chia hết cho n - 1
hay n - 1 thuộc Ư(2) = {-2; -1; 1; 2}
=> n = {-1; 0; 2; 3}
Do n # -1 nên n = { 0; 2; 3}
n = 0 thì D = 4 (t/m)
n = 2 thì D = 2 (t/m)
n = 3 thì D = 7/4 (loại)
Vậy n = {0; 2} thì C và D đều nguyên
a) C và D cùng tồn tại khi \(n\ne\pm1\)
b) Để C là số nguyên
=> 2 chia hết cho n - 1
=> n - 1 thuộc Ư(2) ={1;-1;2;-2}
nếu n - 1 = 1 => n = 2
n - 1 = -1 => n = 0
n-1 = 2 => n = 3
n -1 = - 2 => n = -1
Để \(D=\frac{n+4}{n+1}=\frac{n+1+3}{n+1}=1+\frac{3}{n+1}\)là số nguyên
=> 3 chia hết cho n + 1
=> n + 1 thuộc Ư(3)={1;-1;3;-3}
nếu n + 1 = 1 => n = 0 (TM)
n + 1 = - 1 => n = - 2 (Loại)
n + 1 = 3 => n = 2 (TM)
n + 1 = - 3 => n = - 4 (Loại)
KL: n = 0 hoặc n = - 2 thì C và D đều là số nguyên