\(B=\left(x-1\right)^2+\left(y-1\right)^2+xy-x-y+1-3+2013^{2014}\)
\(B=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)+2013^{2014}-3\)
\(B=\left(x-1+\frac{y-1}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2013^{2014}-3\ge2013^{2014}-3\)
Vậy \(minB=2013^{2014}-3\) <=> \(y=x=1\)