Cho bốn đường thẳng phân biệt xx’; yy’; zz’ và tt’ cắt nhau tại O. Lấy 4 điểm, 5 điểm, 6 điểm, 7 điểm phân biệt khác điểm O lần lượt thuộc bốn đường thẳng trên. Sao cho trong 3 điểm bất kỳ, mỗi điểm thuộc một đường thẳng khác nhau đều không thẳng hàng. Trên hình vẽ có bao nhiêu tia? Qua hai điểm vẽ được một đường thẳng, hỏi có thể vẽ được tất cả bao nhiêu đường thẳng?
+ Tổng số điểm phân biệt là: 4 + 5 + 6 + 7 + 1 = 23 điểm. Qua 2 điểm
vẽ được 1 đường thẳng nên ta có 23. 22 : 2 = 253 đường thẳng.
0,25
+ Mặt khác số các điểm thẳng hàng là 5;6;7;8 nên số các đường thẳng
trùng nhau là 10,15,21,28. Số đường thẳng cần tìm là: 253 - 10 - 15 -
0,25
21 - 28 + 4 = 183 đường thẳng
Trên 4 đường thẳng xx' ; yy' ; zz' và tt' có số điểm phân biệt tương ứng là 5, 6, 7, 8 => Số tia lần lượt tương ứng là 10, 12, 14, 16 => Tổng số tia cần tìm là 10 + 12 + 14 + 16 = 52 tia.
Tổng số điểm phân biệt là : 4 + 5 + 6 + 7 + 1 = 23 điểm. Qua 2 điểm ta vẽ được 1 đường thẳng nên ta có 23 . 22 : 2 = 253 đường thẳng.
Mặt khác số các điểm thẳng hàng là 5, 6, 7, 8 nên số các đường thẳng trùng nhau là 10, 15, 21, 28. Số đường thẳng cần tìm là : 253 - 10 - 15 - 21 - 28 + 4 = 183 đường thẳng.