Ta có:
\(\frac{1}{b}-\frac{1}{b+1}=\frac{b+1-b}{b\left(b+1\right)}=\frac{1}{b\left(b+1\right)}\)
\(\frac{1}{b-1}-\frac{1}{b}=\frac{b-b+1}{b\left(b-1\right)}=\frac{1}{b\left(b-1\right)}\)
Mà b<1=>b(b+1)<b2
=> b(b-1)<b2
=> b(b+1)<b2<b(b-1)
=> \(\frac{1}{b}-\frac{1}{b+1}< \frac{1}{b^2}< \frac{1}{b-1}-\frac{1}{b}\)