a) Với x>=0,x khác 1, ta có:
\(C=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\left(\frac{\sqrt{x}-2}{x-1}-\frac{\sqrt{x}+2}{\left(x+1\right)^2}\right).\frac{\left(1-x\right)^2}{2}\)
\(=\frac{-\sqrt{x}-2-\sqrt{x}+2}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\frac{-2\sqrt{x}}{\left(x-1\right)\left(x+1\right)^2}.\frac{\left(x-1\right)^2}{2}\)
\(=\sqrt{x}\left(1-\sqrt{x}\right)\)
\(=\sqrt{x}-x\)
b) Không làm được
c)\(\sqrt{x}-x=-\left(x-\sqrt{x}+\frac{1}{4}-\frac{1}{4}\right)=-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\)
Vì\(-\left(\sqrt{x}-\frac{1}{2}\right)^2\le0\left(\forall x\right)\Rightarrow-\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi và chỉ khi:\(\sqrt{x}-\frac{1}{2}=0\Rightarrow x=\frac{1}{4}\)
Vậy Max A=\(\frac{1}{4}\)tại x=\(\frac{1}{4}\)