Bài 1: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
Bài 2: Tính giá trị của biểu thức:
\(E=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 3: Chứng minh rằng các biểu thức sau có gúa trị là số nguyên
\(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)
Bài 1: Chứng Minh Rằng : \(\sqrt[3]{\sqrt[3]{2}-1}\)= \(\sqrt[3]{\frac{1}{9}}-\sqrt[3]{\frac{2}{9}}+\sqrt[3]{\frac{4}{9}}\)
Bài 2: Rút gọn biểu thức:
A= \(\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\)( với a>2)
B= \(\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\)(ab # 0)
1/ Rút gọn biểu thức:\(G=\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x}\)
2/ Cho biểu thức: \(M=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a. Tìm ĐKXĐ
b. Rút gọn M
c. Tìm giá trị nhỏ nhất của M
3/ Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}|\)với \(a\ne0,b\ne0,a+b\ne0\)
4/ Biết a,b,c là số dương và ab + bc + ac =1. Hãy tính tổng:
\(M=a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Bài 1. (2,0 điểm)
a) Cho biểu thức: \(A = \left( {\frac{{2\sqrt x + 1}}{{x + 2\sqrt x + 1}} + \frac{{1 - 2\sqrt x }}{{x - 1}}} \right).\left( {1 + \frac{1}{{\sqrt x }}} \right)\) với x>0;x≠1. Rút gọn biểu thức A và tìm các giá trị nguyên của x để A là số nguyên.
b) Cho biểu thức:
\(M = \left( {\sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( {\sqrt x + \sqrt {x + 1} - \sqrt {x + 2} } \right)\left( {\sqrt x - \sqrt {x + 1} + \sqrt {x + 2} } \right)\left( { - \sqrt x + \sqrt {x + 1} + \sqrt {x + 2} } \right)\)
Với x là số tự nhiên khác 0. Chứng minh M cũng là số tự nhiên.
a/Chứng minh rằng \(\frac{2}{\left(2n+1\right)\sqrt{n}+\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)
b/Áp dụng chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{4003\left(\sqrt{2001}+\sqrt{2002}\right)}<\frac{2001}{2003}\)
Rút gọn biểu thức \(B=\left(\frac{\sqrt{a-2}+2}{3}\right)\left(\frac{\sqrt{a-2}}{3+\sqrt{a-2}}+\frac{a+7}{11-a}\right):\left(\frac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\frac{1}{\sqrt{a-2}}\right)\)
các bạn giải chi tiết giúp mk nhé. Cảm ơn
1. a> Rút gọn biểu thức sau : A= \(5\left(\frac{1}{\sqrt{2-\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{10}}{2}\right)^2\)+ \(\left(\frac{1}{\sqrt{2+\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{6}}{2}\right)^2\)
b) Cho biểu thức B= \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}-x-3}{x-1}-\frac{1}{\sqrt{x}-1}\right)\)
Rút gọn biểu thức B và chứng minh B nhỏ hơn hoặc bằng 1 với mọi x lớn hơn hoặc bằng 0 và x khác 1
cho biểu thức p=\(\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{1-\sqrt{a^3}}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)
a)rut gon p
b) xet dau cua bieu thuc M = a. \(\left(P-\frac{1}{2}\right)\)
1.rút gọn biểu thức sau:
a.\(\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
2.chứng minh đẳng thức sau:
a.\(\left(1+\frac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\frac{x-\sqrt{x}}{\sqrt{x-1}}\right)=1-x\)với x>=0,\(x\ne1\)