Ta có: \(A=\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=\frac{1}{3}-\frac{1}{3^{99}}\)
\(A=\frac{1}{6}-\frac{1}{2\times3^{99}}\)
Vì \(\frac{1}{2\times3^{99}}>0\) nên \(\frac{1}{6}-\frac{1}{2\times3^{99}}
Đỗ Văn Hoài Tuân trả lời đúng rùi.