Ta có :
\(A=\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)
\(\Rightarrow A=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)
\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{2}\left(\frac{189}{380}\right)=\frac{189}{760}< \frac{1}{4}\)
Ta có: \(A=\frac{1}{2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+....+\frac{1}{18\times19\times20}\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{18\times19}-\frac{1}{19\times20}\right)\)
\(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{19\times20}\right)\)
\(=\frac{1}{2}\times\frac{1}{1\times2}-\frac{1}{2}\times\frac{1}{19\times20}\)
\(=\frac{1}{4}-\frac{1}{2}\times\frac{1}{19\times20}< \frac{1}{4}\)
Vậy A < 1/4
Công thức đây :
\(\frac{1}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{2}\left(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)\left(n+2\right)}\right)\)
~