Cho a+b+c=0 (abc khác 0). Rút gọn biểu thức:
Q= a^2/a^2-b^2-c^2 + b^2/b^2-c^2-a^2 + c^2/c^2-a^2-b^2
Cho biểu thức \(P=\left(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\right):\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)(Với a>b>0)
Rút gọn P và tìm GTNN của biểu thức này khi b=a-1
Cho biểu thức:
\(Q=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\frac{b}{a-\sqrt{a^2-b^2}}\) với a > b > 0
a) Rút gọn Q
b) Xác định giá trị của Q khi a = 3b
Cho biểu thức :
Q= \(\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right):\left(\frac{b}{a-\sqrt{a^2-b^2}}\right)\)
Với a>b>0
a) Rút gọn Q
b) Xác định giá trị của Q khi a=3b
Cho biểu thức \(P=\left(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\right):\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)( Với a>b>0 )
Rút gọn biểu thức P và tìm giá trị nhỏ nhất của biểu thức này khi b=a-1
bài 1: Cho biểu thức \(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a, rút gọn biểu thức A
b, tìm a để A=1
bài 2 : cho biểu thức \(B=\frac{2\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}\)
a, tìm điều kiện của x để B có nghĩa
b, rút gọn
c, tính giá trị biểu thức B tại x =\(3+2\sqrt{3}\)
bài 3 cho biểu thức \(B=\left(\frac{1}{\sqrt{y}+1}-\frac{3\sqrt{y}}{\sqrt{y}-1}+3\right).\frac{\sqrt{y}+1}{\sqrt{y}+2}\)
a, tìm y để B có nghĩa và rút gọn B
b, tính giá trị của biểu thức B biết y = \(3+2\sqrt{2}\)
GIÚP MÌNH VỚI TỐI MAI ĐI HC RỒI
Cho biểu thức
Q = \(\frac{a}{\sqrt{a^2-b^2}}\)\(-\)\(\left(1+\frac{a}{\sqrt{a^2-b^2}}\right)\)\(:\)\(\frac{b}{a-\sqrt{a^2-b^2}}\)với a>b>0
a. Rút gọn Q
b. Xác định giá trị Q khi a=3b
Cho biểu thức \(P=\left(\dfrac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\dfrac{a-b}{\sqrt{a^2-b^2}-a+b}\right).\left(\dfrac{a^2+b^2}{\sqrt{a^2-b^2}}\right)\)với a>b>0
1) Rút gọn biểu thức P
2) Biết a-b=1. Tìm giá trị nhỏ nhất của P
1) cho biểu thức P=\(\frac{\sqrt{a}+2}{\sqrt{a}+3-}-\frac{5}{a+\sqrt{a}-6}+\frac{1}{2-\sqrt{a}}\)
a/ rút gọn P
b/ tìm giá trị của a để P<1
2) cho biểu thức P=\(\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right):\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right)\)
a/ rút gọn P
b/ tìm giá trị của P<0
Cho biểu thức \(Q=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}+2}-\frac{\sqrt{a}-2}{\sqrt{a}-1}\right)\) với \(a>0;a\ne1\) .
a, Rút gọn biểu thức Q.
b, Tìm giá trị của a để Q > 2.