bài này thì đơn giản thôi
1+(ac+bd)2=(ad-bc)2+(ac+bd)2=a2d2+b2c2+a2c2+b2d2
=(a2+b2)(c2+d2)
\(P=a^2+b^2+c^2+d^2+ac+bd\ge ac+bd+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)
\(=ac+bd+2\sqrt{\left(ac+bd\right)^2+1}\)
đặt ac+bd=Q.
P trở thành:
\(P=Q+2\sqrt{Q^2+1}\Rightarrow P^2=Q^2+4\left(Q^2+1\right)+4Q.\sqrt{Q^2+1}=\left(\sqrt{Q^2+1}+2Q\right)^2+3\ge3\)
\(\Rightarrow P\ge\sqrt{3}\left(Q.E.D\right)\)
Bạn giải thích chỗ này ra được không \(ac+bd+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\)
\(=ac+bd+2\sqrt{\left(ac+bd\right)^2+1}\)