Cho biểu thức P= \(3x^2-5\sqrt{xy}+25y^2\). Hãy thay \(y=\sqrt{\frac{6}{25}},x=\sqrt{\frac{2}{3}}\)rồi tính giá trị của biểu thức
P=3x2 - 5\(\sqrt{xy}\)+ 25y2 . Thay x =\(\sqrt{\frac{2}{3}}\), y=\(\sqrt{\frac{6}{25}}\).Tính giá trị biểu thức
Tính giá trị của biểu thức \(A=\left(3x^3+8x^2+2\right)^{2011}\)với \(x=\frac{\left(\sqrt{5}+2\right)\sqrt[3]{17\sqrt{5}-38}}{\sqrt{5}+\sqrt{14-6\sqrt{5}}}\)
Cho các biểu thức sau:
\(A=0,25x^2y^3-0,5x^2y^3+4x^2y^3\)
\(B=1,5(xy^2)^3x^2y-2(xy)^3x^2y4+[0,\left(3\right)x^2y]^2.xy^5\)
\(C=(0,5.xy).\left(-\frac{1}{3}xy^2\right)\)
\(D=\left(\frac{\sqrt{2}}{3}x^3y^5\right).0,6\left(xy^2\right)\)
a) Thu gọn các biểu thức trên
b) Chỉ ra các đơn thức đồng dạng
c) Tính giá trị các đơn thức sau khi thu gọn tại x=\(\frac{1}{3}\)và y = -1
Tính giá trị biểu thức sau:
\(\sqrt{\frac{4}{81}}.\sqrt{\frac{25}{81}}\)- \(1\frac{2}{5}\)
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Cho các biểu thức:
A=\(\frac{4x-7}{x-2}\)
B=\(\frac{3x+9}{x-4}\)
\(C=\frac{3x^2-x+2}{x-3}\)
\(D=\frac{\sqrt{x-5}}{\sqrt{x-1}}\)
a) tìm các giá trị nguyên của x để mỗi biểu thức trên có giá trị nguyên
b) tìm các giá trị nguyên của x để cả 3 biểu thức A, B, C trên cùng có giá trị nguyên
1.Chứng tỏ rằng:
A=75.(42004+42003+...+42+4+1)+25 chia hết cho 100
2.tính nhanh:
\(A=\frac{\left(1+2+3+...+99+100\right)\left(\frac{1}{2}-\frac{1}{3}-\frac{1}{7}-\frac{1}{9}\right)\left(63.1,2-21.3,6\right)}{1-2+3-4+...+99-100}\)
\(B=\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{\sqrt[3]{2}}{35}\right).\left(-\frac{4}{15}\right)}{\left(\frac{1}{10}+\frac{\sqrt[3]{2}}{25}-\frac{\sqrt{2}}{5}\right).\frac{5}{7}}\)
3.a)tính giá trị của biểu thức A=3x2-2x+1 với |x|=\(\frac{1}{2}\)
b)Tìm x nguyên để \(\sqrt{x+1}\)chia hết cho \(\sqrt{x-3}\)
tính giá trị lớn nhất của biểu thức :
\(\frac{8}{5+x^2+\left(y-2\right)^4}\) + \(\frac{5}{3+\sqrt{x}}\)