Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
꧁WღX༺

Cho biểu thức M=\(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]\) \(:\frac{a^3+4a}{4a^2}\)

a) Rút gọn M

b) tìm a để M=0

c) Tìm a để M đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó

Tran Le Khanh Linh
24 tháng 3 2020 lúc 20:14

a) \(a\ne0;a\ne1\)

\(\Leftrightarrow M=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)

\(=\left[\frac{\left(a-1\right)^2}{a^2+a+1}-\frac{1-2a^2+4a}{\left(a-1\right)\left(a^2+a+1\right)}+\frac{1}{a-1}\right]\cdot\frac{4a^2}{a\left(a^2+4\right)}\)

\(=\frac{\left(a-1\right)^3-1+2a^2-4a+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\frac{4a}{a^2+4}\)

\(=\frac{a^3-1}{a^3-1}\cdot\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)

Vậy \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

b) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

M>0 khi 4a>0 => a>0

Kết hợp với ĐKXĐ

Vậy M>0 khi a>0 và a\(\ne\)1

c) \(M=\frac{4a}{a^2+4}\left(a\ne0;a\ne1\right)\)

\(M=\frac{4a}{a^2+4}=\frac{\left(a^2+4\right)-\left(a^2-4a+4\right)}{a^2+4}=1-\frac{\left(a-2\right)^2}{a^2+4}\)

Vì \(\frac{\left(a-2\right)^2}{a^2+4}\ge0\forall a\)nên \(1-\frac{\left(a-2\right)^2}{a^2+4}\le1\forall a\)

Dấu "=" <=> \(\frac{\left(a-2\right)^2}{a^2+4}=0\)\(\Leftrightarrow a=2\)

Vậy \(Max_M=1\)khi a=2

Khách vãng lai đã xóa
susamogus
28 tháng 3 2023 lúc 18:17

mik thắc mắc tại sao 3a lại mất vậy

 


Các câu hỏi tương tự
Funny Suuu
Xem chi tiết
Ái Kiều
Xem chi tiết
Mờ Lem
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
Hoàng Phương Minh
Xem chi tiết
Phan Chí Công
Xem chi tiết
lê văn ải
Xem chi tiết
Đinh Thị Thùy Trang
Xem chi tiết
Dâu tâyy
Xem chi tiết