Cho biểu thức E = \(\dfrac{\left(X+2007\right)\left(X+2008\right)}{X}\) với X > 0
Tìm giá trị của X để biểu thức E đạt GTNN và tìm GTNN đó?
a, cho x=\(\sqrt{2+\sqrt{3}}\) + \(\sqrt{2-\sqrt{3}}\) và y=\(\sqrt{7-2\sqrt{6}}\)
tính giá trị của biểu thức P=\(\left(x-y\right)^{2020}\)
b, tìm GTNN của B=\(x-\sqrt{x-2020}\)
Cho biểu thức: \(A=\left(\dfrac{x+2}{x\sqrt{x}-1}+\dfrac{\sqrt{x}}{x+\sqrt{x}+1}+\dfrac{1}{1-\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{2}\). Tìm tất cả các giá trị của x để biểu thức A nhận giá trị là 1 số nguyên
cho ba số thực dương x,y,z thỏa mãn điều kiện x2≥y+z .Tìm giá trị nhỏ nhất của biểu thức : P = \(\dfrac{1}{x^2}\left(y^2+z^2\right)+\dfrac{7x^2}{2}\left(\dfrac{1}{y^2}+\dfrac{1}{z^2}\right)+2007\)
cho x>0; y>0 và \(\sqrt{xy}\left(x-y\right)=x+y\). tìm GTNN của biểu thức \(P=x+y\)
Cho biểu thức \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\) với \(x\ge0;x\ne1\)
a. Rút gọn M
b. Tìm số nguyên x để M có giá trị là số nguyên
Cho hai số dương x,y thỏa mãn x+y=1. Tìm GTNN của biểu thức\(\left(x^2+\dfrac{1}{y^2}\right)\left(y^2+\dfrac{1}{x^2}\right)\)
Cho x,y,z khác 0 và x+y+z=2008 . Tính giá trị biểu thức : \(P=\dfrac{x^3}{\left(x-y\right)\left(x-z\right)}+\dfrac{y^3}{\left(y-x\right)\left(y-z\right)}+\dfrac{z^3}{\left(z-y\right)\left(z-x\right)}\)
1.cho biểu thức A=\(\dfrac{\sqrt{x}}{\sqrt{x}-2}-\dfrac{4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}\) với x>0,x\(\ne4\)
a.rút gọn biểu thức M
b.tính giá trị của M khi x=3+2\(\sqrt{2}\)
c.tìm giá trị của x để M>0